Cetirizine and hydrocortisone differentially regulate ICAM-1 expression and chemokine release in cultured human keratinocytes. 1998

C Albanesi, and S Pastore, and E Fanales-Belasio, and G Girolomoni
Laboratory of Immunology, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy.

BACKGROUND Cetirizine is a H1 histamine antagonist which possesses anti-inflammatory properties through inhibition of leucocyte recruitment and activation, and reduction of ICAM-1 expression on mucosal epithelial cells. No studies have addressed the potential anti-inflammatory activities of cetirizine on skin keratinocytes. OBJECTIVE Cetirizine and hydrocortisone were compared in their capacity to counteract human keratinocytes activation by IFNgamma. In particular, expression of immuno-modulatory membrane molecules and chemokine release have been examined. METHODS Keratinocyte cultures established from normal skin of healthy donors were activated by IFNgamma (100-500 U/mL) in the absence or presence of cetirizine (10(-3)-10(3) microM) or hydrocortisone (10(-3)-10(2) microM), and tested for expression of ICAM-1, HLA-DR, MHC class I and CD40 as well as for release of RANTES, IL-8, macrophage chemotactic protein-1 (MCP-1) and granulocyte macrophage-colony stimulating factor (GM-CSF). RESULTS Cetirizine at high concentrations (10(2)-10(3) microM) markedly inhibited IFNgamma-induced expression of membrane ICAM-1, HLA-DR and up-regulation of MHC class I, but had no effect on CD40 expression. In contrast, hydrocortisone (10(2) microM) enhanced IFNgamma-induced membrane ICAM-1, reduced expression of HLA-DR and did not alter expression of MHC class I and CD40. Consistently, high doses of cetirizine decreased, whereas hydrocortisone increased, soluble ICAM-1 levels in the supernatants of IFNgamma-treated keratinocytes. The inhibiting and stimulating effects of cetirizine and hydrocortisone, respectively, on ICAM-1 expression were confirmed at the mRNA level by Northern blot analysis. Finally, cetirizine, but not hydrocortisone, inhibited the release of MCP-1 and RANTES from IFNgamma-stimulated keratinocytes. In contrast, hydrocortisone, but not cetirizine, reduced GM-CSF and IL-8 release. CONCLUSIONS The results indicate that cetirizine has the capacity to block the IFNgamma-induced activation of keratinocytes, and thus can exert important regulatory effects on TH1 cell-mediated immune responses in the skin. The high doses required for evidencing these activities suggest the potential benefits of a topical use of cetirizine.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006634 Histamine H1 Antagonists Drugs that selectively bind to but do not activate histamine H1 receptors, thereby blocking the actions of endogenous histamine. Included here are the classical antihistaminics that antagonize or prevent the action of histamine mainly in immediate hypersensitivity. They act in the bronchi, capillaries, and some other smooth muscles, and are used to prevent or allay motion sickness, seasonal rhinitis, and allergic dermatitis and to induce somnolence. The effects of blocking central nervous system H1 receptors are not as well understood. Antihistamines, Classical,Antihistaminics, Classical,Antihistaminics, H1,Histamine H1 Antagonist,Histamine H1 Receptor Antagonist,Histamine H1 Receptor Antagonists,Histamine H1 Receptor Blockaders,Antagonists, Histamine H1,Antagonists, Histamine H1 Receptor,Antihistamines, Sedating,Blockaders, Histamine H1 Receptor,First Generation H1 Antagonists,H1 Receptor Blockaders,Histamine H1 Blockers,Receptor Blockaders, H1,Antagonist, Histamine H1,Classical Antihistamines,Classical Antihistaminics,H1 Antagonist, Histamine,H1 Antagonists, Histamine,H1 Antihistaminics,Sedating Antihistamines
D006684 HLA-DR Antigens A subclass of HLA-D antigens that consist of alpha and beta chains. The inheritance of HLA-DR antigens differs from that of the HLA-DQ ANTIGENS and HLA-DP ANTIGENS. HLA-DR,Antigens, HLA-DR,HLA DR Antigens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D000893 Anti-Inflammatory Agents Substances that reduce or suppress INFLAMMATION. Anti-Inflammatory Agent,Antiinflammatory Agent,Agents, Anti-Inflammatory,Agents, Antiinflammatory,Anti-Inflammatories,Antiinflammatories,Antiinflammatory Agents,Agent, Anti-Inflammatory,Agent, Antiinflammatory,Agents, Anti Inflammatory,Anti Inflammatories,Anti Inflammatory Agent,Anti Inflammatory Agents
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015603 Keratinocytes Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell. Keratinocyte

Related Publications

C Albanesi, and S Pastore, and E Fanales-Belasio, and G Girolomoni
June 2002, FEBS letters,
C Albanesi, and S Pastore, and E Fanales-Belasio, and G Girolomoni
June 2006, Clinical and experimental immunology,
C Albanesi, and S Pastore, and E Fanales-Belasio, and G Girolomoni
June 1998, Archives of dermatological research,
C Albanesi, and S Pastore, and E Fanales-Belasio, and G Girolomoni
January 1996, Thymus,
C Albanesi, and S Pastore, and E Fanales-Belasio, and G Girolomoni
October 1999, The European respiratory journal,
C Albanesi, and S Pastore, and E Fanales-Belasio, and G Girolomoni
January 2013, PloS one,
C Albanesi, and S Pastore, and E Fanales-Belasio, and G Girolomoni
January 2016, PloS one,
C Albanesi, and S Pastore, and E Fanales-Belasio, and G Girolomoni
November 1995, The Journal of dermatology,
C Albanesi, and S Pastore, and E Fanales-Belasio, and G Girolomoni
July 2011, The Journal of dermatology,
C Albanesi, and S Pastore, and E Fanales-Belasio, and G Girolomoni
March 1996, Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology,
Copied contents to your clipboard!