4-hydroxynonenal, a lipid peroxidation product, impairs glutamate transport in cortical astrocytes. 1998

E M Blanc, and J N Keller, and S Fernandez, and M P Mattson
Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536-0230, USA.

Astrocytes possess plasma membrane glutamate transporters that rapidly remove glutamate from the extracellular milieu and thereby prevent excitotoxic injury to neurons. Cellular oxidative stress is increased in neural tissues in a variety of acute and chronic neurodegenerative conditions. Recent findings suggest that oxidative stress increases neuronal vulnerability to excitotoxicity and that membrane lipid peroxidation plays a key role in this process. We now report that 4-hydroxynonenal (HNE), an aldehydic product of membrane lipid peroxidation, impairs glutamate transport in cultured cortical astrocytes. Impairment of glutamate transport occurred within 1-3 h of exposure to HNE; FeSO4, an inducer of membrane lipid peroxidation, also impaired glutamate transport. Vitamin E prevented impairment of glutamate transport induced by FeSO4, but not that induced by HNE, consistent with HNE acting as an effector of lipid peroxidation-induced impairment of glutamate transport. Glutathione, which binds and thereby detoxifies HNE, prevented HNE from impairing glutamate transport. Western blot, immunoprecipitation, and immunocytochemical analyses using an antibody against HNE-protein conjugates provided evidence that HNE covalently binds to many different astrocytic proteins including the glutamate transporter GLT-1. Data further suggest that HNE promotes intermolecular cross-linking of GLT-1 monomers to form dimers. HNE also induced mitochondrial dysfunction and accumulation of peroxides in astrocytes. Impairment of glutamate transport and mitochondrial function occurred with sublethal concentrations of HNE, concentrations known to be generated in cells exposed to various oxidative insults. Collectively, our data suggest that HNE may be an important mediator of oxidative stress-induced impairment of astrocytic glutamate transport and may thereby play a role in promoting neuronal excitotoxicity.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000447 Aldehydes Organic compounds containing a carbonyl group in the form -CHO. Aldehyde
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous

Related Publications

E M Blanc, and J N Keller, and S Fernandez, and M P Mattson
March 1998, Journal of neuropathology and experimental neurology,
E M Blanc, and J N Keller, and S Fernandez, and M P Mattson
June 1997, Journal of neurochemistry,
E M Blanc, and J N Keller, and S Fernandez, and M P Mattson
July 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
E M Blanc, and J N Keller, and S Fernandez, and M P Mattson
May 2008, Urology,
E M Blanc, and J N Keller, and S Fernandez, and M P Mattson
January 1994, Cell biochemistry and function,
E M Blanc, and J N Keller, and S Fernandez, and M P Mattson
January 1995, Cancer biotherapy,
E M Blanc, and J N Keller, and S Fernandez, and M P Mattson
April 1986, Biological chemistry Hoppe-Seyler,
E M Blanc, and J N Keller, and S Fernandez, and M P Mattson
September 2021, Biomolecules,
E M Blanc, and J N Keller, and S Fernandez, and M P Mattson
December 2002, Cell biochemistry and function,
Copied contents to your clipboard!