Mechanism of inducible nitric oxide synthase inactivation by aminoguanidine and L-N6-(1-iminoethyl)lysine. 1998

R Bryk, and D J Wolff
Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA. bryk@umdnj.edu

The inducible nitric oxide synthase (iNOS) selective inhibitors aminoguanidine (AG) and N6-(1-iminoethyl)-L-lysine (NIL), under conditions that support catalytic turnover, inactivate the enzyme by altering in different ways the functionality of the active site. NIL inactivation of the iNOS primarily targets the heme residue at the active site, as evidenced by a time- and concentration-dependent loss of heme fluorescence that accompanies the loss of NO-forming activity. The NIL-inactivated iNOS dimers that have lost their heme partially disassemble into monomers with no fluorometrically detectable heme. AG inactivation of the iNOS is not accompanied by heme destruction, as evidenced by retention of heme fluorescence and absorbance after complete loss of NO-forming activity. The AG-inactivated iNOS dimers do not disassemble into monomers as extensively as NIL-inactivated dimers. Incubation of the iNOS with 14C-labeled NIL results in no detectable protein-associated radioactivity in the NIL-inactivated iNOS, suggesting that the primary mechanism of the iNOS inactivation by NIL is heme alteration and loss. In contrast, incubations of iNOS with 14C-labeled AG result in the incorporation of radioactivity into both iNOS protein and low molecular weight structures that migrate by SDS-PAGE similarly to free heme. These observations suggest that AG inactivation proceeds through multiple pathways of covalent modification of the iNOS protein and the heme residue at the active site, but which sustain the integrity of the heme porphyrin ring.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D052247 Nitric Oxide Synthase Type II A CALCIUM-independent subtype of nitric oxide synthase that may play a role in immune function. It is an inducible enzyme whose expression is transcriptionally regulated by a variety of CYTOKINES. INOS Enzyme,Inducible NOS Protein,Inducible Nitric Oxide Synthase,NOS-II,Nitric Oxide Synthase II,Nitric Oxide Synthase, Type II,NOS II

Related Publications

R Bryk, and D J Wolff
November 1994, Journal of medicinal chemistry,
R Bryk, and D J Wolff
January 1996, Methods in enzymology,
R Bryk, and D J Wolff
November 1993, British journal of pharmacology,
R Bryk, and D J Wolff
March 1993, European journal of pharmacology,
Copied contents to your clipboard!