Ribozyme-targeted destruction of RNA associated with autosomal-dominant retinitis pigmentosa. 1998

K A Drenser, and A M Timmers, and W W Hauswirth, and A S Lewin
Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, USA.

OBJECTIVE To design ribozymes--catalytic RNA molecules--to cleave the P23H and S334Ter mutant mRNA selectively and to test them in vitro to determine their potential as therapeutic agents in the prevention of autosomal dominant retinitis pigmentosa. METHODS Synthetic RNA targets were used in cleavage assays to determine the catalytic efficiencies of the ribozymes in vitro. Cleavage products were analyzed by denaturing polyacrylamide gel electrophoresis. Total retinal RNA was also used as a substrate, and opsin mRNA cleavage was assayed by reverse transcription-polymerase chain reaction. RESULTS All three ribozymes cleaved the mutant target specifically. Substrate cleavage was seen in less than 5 mM magnesium and was detectable after 15 minutes of incubation. The most active ribozyme against the P23H target was the hammerhead (kcat:K(m) [Michaelis-Menton constant] ratio = 5 x 10(7) M/min), then the P23H hairpin ribozyme (kcat:K(m) ratio = 9 x 10(5) M/min) and the S334Ter hammerhead (kcat:K(m) ratio = 8 x 10(5) M/min). No cleavage activity was observed, when wild-type target sequences or inactive control ribozymes were used. The ribozymes bound and specifically digested the intact mutant opsin mRNA in the presence of all normal retinal RNA. CONCLUSIONS Ribozymes can discriminate between the mutant and wild-type sequences of mRNA associated with autosomal dominant retinitis pigmentosa. The kinetics and specificity of ribozyme cleavage indicate that they should reduce the amount of aberrant rhodopsin in the rod cells and may have potential as therapeutic agents against genetic disease.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012174 Retinitis Pigmentosa Hereditary, progressive degeneration of the retina due to death of ROD PHOTORECEPTORS initially and subsequent death of CONE PHOTORECEPTORS. It is characterized by deposition of pigment in the retina. Pigmentary Retinopathy,Tapetoretinal Degeneration,Pigmentary Retinopathies,Retinopathies, Pigmentary,Retinopathy, Pigmentary,Tapetoretinal Degenerations
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015345 Oligonucleotide Probes Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin. Oligodeoxyribonucleotide Probes,Oligonucleotide Probe,Oligoribonucleotide Probes,Probe, Oligonucleotide,Probes, Oligodeoxyribonucleotide,Probes, Oligonucleotide,Probes, Oligoribonucleotide
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

K A Drenser, and A M Timmers, and W W Hauswirth, and A S Lewin
September 2000, Investigative ophthalmology & visual science,
K A Drenser, and A M Timmers, and W W Hauswirth, and A S Lewin
January 2018, Advances in experimental medicine and biology,
K A Drenser, and A M Timmers, and W W Hauswirth, and A S Lewin
January 1993, Oftalmologia (Bucharest, Romania : 1990),
K A Drenser, and A M Timmers, and W W Hauswirth, and A S Lewin
October 2021, International ophthalmology clinics,
K A Drenser, and A M Timmers, and W W Hauswirth, and A S Lewin
April 1999, Nature genetics,
K A Drenser, and A M Timmers, and W W Hauswirth, and A S Lewin
January 2012, Molecular vision,
K A Drenser, and A M Timmers, and W W Hauswirth, and A S Lewin
August 1998, Nature medicine,
K A Drenser, and A M Timmers, and W W Hauswirth, and A S Lewin
June 2006, Annals of the Academy of Medicine, Singapore,
K A Drenser, and A M Timmers, and W W Hauswirth, and A S Lewin
August 1991, Proceedings of the National Academy of Sciences of the United States of America,
K A Drenser, and A M Timmers, and W W Hauswirth, and A S Lewin
January 2020, Frontiers in medicine,
Copied contents to your clipboard!