Mechanisms of concerted firing among retinal ganglion cells. 1998

I H Brivanlou, and D K Warland, and M Meister
Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

Nearby retinal ganglion cells often fire action potentials in near synchrony. We have investigated the circuit mechanisms that underlie these correlations by recording simultaneously from many ganglion cells in the salamander retina. During spontaneous activity in darkness, three types of correlations were distinguished: broad (firing synchrony within 40-100 ms), medium (10-50 ms), and narrow (<1 ms). When chemical synaptic transmission was blocked, the broad correlations disappeared, but the medium and narrow correlations persisted. Further analysis of the strength and time course of synchronous firing suggests that nearby ganglion cells share inputs from photoreceptors conveyed through interneurons via chemical synapses (broad correlations), share excitation from amacrine cells via electrical junctions (medium), and excite each other via electrical junctions (narrow). It appears that the firing patterns in the optic nerve are strongly shaped by electrical coupling in the inner retina.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D003623 Dark Adaptation Adjustment of the eyes under conditions of low light. The sensitivity of the eye to light is increased during dark adaptation. Scotopic Adaptation,Adaptation, Dark,Adaptation, Scotopic
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000557 Ambystoma A genus of the Ambystomatidae family. The best known species are the axolotl AMBYSTOMA MEXICANUM and the closely related tiger salamander Ambystoma tigrinum. They may retain gills and remain aquatic without developing all of the adult characteristics. However, under proper changes in the environment they metamorphose. Amblystoma,Ambystoma tigrinum,Tiger Salamander,Amblystomas,Ambystomas,Salamander, Tiger,Salamanders, Tiger,Tiger Salamanders
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell

Related Publications

I H Brivanlou, and D K Warland, and M Meister
September 2007, Neuron,
I H Brivanlou, and D K Warland, and M Meister
November 1995, Science (New York, N.Y.),
I H Brivanlou, and D K Warland, and M Meister
February 1989, Trends in neurosciences,
I H Brivanlou, and D K Warland, and M Meister
February 1999, Journal of neurophysiology,
I H Brivanlou, and D K Warland, and M Meister
March 1990, Brain research,
I H Brivanlou, and D K Warland, and M Meister
October 1997, Journal of neurophysiology,
I H Brivanlou, and D K Warland, and M Meister
January 2002, Journal of neurophysiology,
I H Brivanlou, and D K Warland, and M Meister
January 2007, Visual neuroscience,
I H Brivanlou, and D K Warland, and M Meister
October 2011, Sheng li xue bao : [Acta physiologica Sinica],
I H Brivanlou, and D K Warland, and M Meister
January 2014, Channels (Austin, Tex.),
Copied contents to your clipboard!