T cell positive selection by a high density, low affinity ligand. 1998

C P Liu, and F Crawford, and P Marrack, and J Kappler
Howard Hughes Medical Institute, Division of Basic Immunology, Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.

Interaction of the alpha beta T cell receptor (TCR) with major histocompatibility (MHC) molecules occupied with any of a large collection of peptides derived from self proteins is a critical step in driving T cell "positive" selection in the thymus. Interaction with this same pool of self-peptide/MHC ligands deletes T cells with potential self-reactivity. To examine how T cells survive both of these processes to form a self-tolerant mature repertoire, mice were constructed whose entire class II MHC IEk specific repertoire was positively selected on a single peptide covalently attached to the IEk molecule. In these mice T cells were identified that could respond to a variant of the positively selecting peptide bound to IEk. The affinities of the TCRs from these T cells for the positively selecting ligand were extremely low and at least 10-fold less than those for the activating ligand. These results support the theory that positive selection is driven by TCR affinities lower than those involved in T cell deletion or activation and that, if present at high concentration, even very low affinity ligands can positively select.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D006825 Hybridomas Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell. Hybridoma
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000949 Histocompatibility Antigens Class II Large, transmembrane, non-covalently linked glycoproteins (alpha and beta). Both chains can be polymorphic although there is more structural variation in the beta chains. The class II antigens in humans are called HLA-D ANTIGENS and are coded by a gene on chromosome 6. In mice, two genes named IA and IE on chromosome 17 code for the H-2 antigens. The antigens are found on B-lymphocytes, macrophages, epidermal cells, and sperm and are thought to mediate the competence of and cellular cooperation in the immune response. The term IA antigens used to refer only to the proteins encoded by the IA genes in the mouse, but is now used as a generic term for any class II histocompatibility antigen. Antigens, Immune Response,Class II Antigens,Class II Histocompatibility Antigen,Class II Major Histocompatibility Antigen,Ia Antigens,Ia-Like Antigen,Ia-Like Antigens,Immune Response Antigens,Immune-Associated Antigens,Immune-Response-Associated Antigens,MHC Class II Molecule,MHC II Peptide,Class II Antigen,Class II Histocompatibility Antigens,Class II MHC Proteins,Class II Major Histocompatibility Antigens,Class II Major Histocompatibility Molecules,I-A Antigen,I-A-Antigen,IA Antigen,MHC Class II Molecules,MHC II Peptides,MHC-II Molecules,Antigen, Class II,Antigen, I-A,Antigen, IA,Antigen, Ia-Like,Antigens, Class II,Antigens, Ia,Antigens, Ia-Like,Antigens, Immune-Associated,Antigens, Immune-Response-Associated,I A Antigen,II Peptide, MHC,Ia Like Antigen,Ia Like Antigens,Immune Associated Antigens,Immune Response Associated Antigens,MHC II Molecules,Molecules, MHC-II,Peptide, MHC II,Peptides, MHC II
D001216 Asparagine A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) L-Asparagine

Related Publications

C P Liu, and F Crawford, and P Marrack, and J Kappler
June 2001, Journal of immunology (Baltimore, Md. : 1950),
C P Liu, and F Crawford, and P Marrack, and J Kappler
February 2009, Trends in immunology,
C P Liu, and F Crawford, and P Marrack, and J Kappler
June 1996, Nature,
C P Liu, and F Crawford, and P Marrack, and J Kappler
January 1999, Immunity,
C P Liu, and F Crawford, and P Marrack, and J Kappler
January 2000, Current topics in microbiology and immunology,
C P Liu, and F Crawford, and P Marrack, and J Kappler
January 1988, The Journal of biological chemistry,
C P Liu, and F Crawford, and P Marrack, and J Kappler
June 1996, Immunology and cell biology,
C P Liu, and F Crawford, and P Marrack, and J Kappler
April 1996, Journal of immunology (Baltimore, Md. : 1950),
C P Liu, and F Crawford, and P Marrack, and J Kappler
February 1994, Current opinion in immunology,
C P Liu, and F Crawford, and P Marrack, and J Kappler
August 2014, The Journal of cell biology,
Copied contents to your clipboard!