EPR properties of synthetic apatites, deorganified dentine, and enamel. 1998

G H Kenner, and E H Haskell, and R B Hayes, and A Baig, and W I Higuchi
Division of Radiobiology, University of Utah, Salt Lake City, Utah 84103, USA.

Electron paramagnetic resonance spectroscopy (EPR) was used to study synthetic hydroxyapatite and approximately 1, 2, and 6% synthetic carbonated apatites, deorganified dentine, and enamel. The carbonated apatites were synthesized by hydrolysis of dicalcium phosphate. Comparisons were made with spectra from enamel and deorganified dentine. Microwave power saturation and dose responses were determined for the synthetic materials. The Marquardt version of the Levenberg decomposition method was used to extract individual signals from the apatite data. Two samples of dentine were irradiated with 25 and 100 Gy, respectively, from a 60Co source. The first sample was then deorganified at 200 degreesC using the Soxhlet extraction technique. A third sample was irradiated with 100 Gy after deorganification. The resulting EPR spectra were then compared. It was determined that the dosimetric signal of 2% synthetic carbonated apatite was approximately the same as that of enamel. It was also verified that the dosimetric signal saturates at about 2% in synthetic carbonated apatites. The study established that the precenters responsible for the dosimetric signal (g perpendicular = 2.0018, g parallel = 1.9985) are preferentially concentrated in the surface-accessible region of the mineral component, as shown by the approximately 80% attenuation of the dosimetric signal in dentine following deorganification. The precenters responsible are not destroyed by the deorganification since the magnitude of the dosimetric signal from the dentine specimen irradiated following deorganification was approximately twice that of the comparable untreated, irradiated sample. Finally, the dose response of 2 and 6% synthetic carbonated apatites was determined.

UI MeSH Term Description Entries
D003037 Cobalt Radioisotopes Unstable isotopes of cobalt that decay or disintegrate emitting radiation. Co atoms with atomic weights of 54-64, except 59, are radioactive cobalt isotopes. Radioisotopes, Cobalt
D003743 Dental Enamel A hard thin translucent layer of calcified substance which envelops and protects the dentin of the crown of the tooth. It is the hardest substance in the body and is almost entirely composed of calcium salts. Under the microscope, it is composed of thin rods (enamel prisms) held together by cementing substance, and surrounded by an enamel sheath. (From Jablonski, Dictionary of Dentistry, 1992, p286) Enamel,Enamel Cuticle,Dental Enamels,Enamel, Dental,Enamels, Dental,Cuticle, Enamel,Cuticles, Enamel,Enamel Cuticles,Enamels
D003804 Dentin The hard portion of the tooth surrounding the pulp, covered by enamel on the crown and cementum on the root, which is harder and denser than bone but softer than enamel, and is thus readily abraded when left unprotected. (From Jablonski, Dictionary of Dentistry, 1992) Dentine,Dentines,Dentins
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001031 Apatites A group of phosphate minerals that includes ten mineral species and has the general formula X5(YO4)3Z, where X is usually calcium or lead, Y is phosphorus or arsenic, and Z is chlorine, fluorine, or OH-. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Apatite
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D017550 Spectroscopy, Fourier Transform Infrared A spectroscopic technique in which a range of wavelengths is presented simultaneously with an interferometer and the spectrum is mathematically derived from the pattern thus obtained. FTIR,Fourier Transform Infrared Spectroscopy,Spectroscopy, Infrared, Fourier Transform
D017886 Durapatite The mineral component of bones and teeth; it has been used therapeutically as a prosthetic aid and in the prevention and treatment of osteoporosis. Calcium Hydroxyapatite,Hydroxyapatite,Hydroxylapatite,Alveograf,Calcitite,Interpore-200,Interpore-500,Osprovit,Ossein-Hydroxyapatite Compound,Ossopan,Osteogen,Periograf,Hydroxyapatite, Calcium,Interpore 200,Interpore 500,Interpore200,Interpore500,Ossein Hydroxyapatite Compound

Related Publications

G H Kenner, and E H Haskell, and R B Hayes, and A Baig, and W I Higuchi
November 1986, Calcified tissue international,
G H Kenner, and E H Haskell, and R B Hayes, and A Baig, and W I Higuchi
November 1996, Advances in dental research,
G H Kenner, and E H Haskell, and R B Hayes, and A Baig, and W I Higuchi
May 1995, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine,
G H Kenner, and E H Haskell, and R B Hayes, and A Baig, and W I Higuchi
August 1970, Archives of oral biology,
G H Kenner, and E H Haskell, and R B Hayes, and A Baig, and W I Higuchi
September 1979, Journal of dentistry,
G H Kenner, and E H Haskell, and R B Hayes, and A Baig, and W I Higuchi
January 1983, Calcified tissue international,
G H Kenner, and E H Haskell, and R B Hayes, and A Baig, and W I Higuchi
December 1951, Treatment services bulletin. Canada. Department of Veterans' Affairs,
G H Kenner, and E H Haskell, and R B Hayes, and A Baig, and W I Higuchi
September 1987, Nichidai koku kagaku = Nihon University journal of oral science,
G H Kenner, and E H Haskell, and R B Hayes, and A Baig, and W I Higuchi
January 1981, Caries research,
G H Kenner, and E H Haskell, and R B Hayes, and A Baig, and W I Higuchi
December 1981, Scandinavian journal of dental research,
Copied contents to your clipboard!