Neonatal sex hormones have 'organizational' effects on the hypothalamic-pituitary-adrenal axis of male rats. 1998

C M McCormick, and B F Furey, and M Child, and M J Sawyer, and S M Donohue
Neuroscience Program, Bates College, Lewiston, Maine 04240, USA.

Sex hormones have activational effects on the hypothalamic-pituitary-adrenal (HPA) axis in adulthood: For example, corticosterone release is influenced by gonadal status. These experiments investigated whether sex hormones have organizational effects on the HPA axis of male rats: Do sex hormones have relatively permanent effects on its development? In adults, both neonatal (neoGDX) and adult gonadectomy (adult GDX) resulted in elevated corticosterone (CORT) levels in response to stress compared to intact rats. Five days of testosterone propionate (TP) replacement was not as effective at attenuating CORT levels in neoGDX rats as in adult GDX rats. Neonatal GDX elevated corticosterone binding globulin (CBG) levels, whereas adult GDX was without effect. In Experiment 2 the effects of neonatal gonadectomy and neonatal treatment with either TP, estradiol benzoate (EB), or oil vehicle was examined. Despite 14 days of hormone replacement, neoGDX showed elevated CORT levels in response to stress compared to all other groups. A single neonatal dose of TP or EB in neoGDX rats eliminated the increased responsiveness. Neonatal TP and EB were without effect in sham-operated rats. Plasma CBG levels were elevated in neoGDX groups regardless of neonatal hormone treatment. Corticosteroid receptor binding levels were examined in various brain areas and the pituitary in two groups most different in their androgen experience: NeoGDX and shams that did not receive treatments as adults. NeoGDX had lower levels of glucocorticoid receptor, and higher levels of mineralocorticoid receptor binding in the pituitary. No other receptor differences were found. These experiments suggest that neonatal sex hormones influence the sensitivity of the HPA axis to sex hormones in adulthood and, thus, that they have organizational effects in addition to activational effects on HPA function.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D008297 Male Males
D009919 Orchiectomy The surgical removal of one or both testicles. Castration, Male,Orchidectomy,Castrations, Male,Male Castration,Male Castrations,Orchidectomies,Orchiectomies
D010913 Pituitary-Adrenal System The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary. Pituitary Adrenal System,Pituitary-Adrenal Systems,System, Pituitary-Adrenal,Systems, Pituitary-Adrenal
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D012733 Sex Differentiation The process in developing sex- or gender-specific tissue, organ, or function after SEX DETERMINATION PROCESSES have set the sex of the GONADS. Major areas of sex differentiation occur in the reproductive tract (GENITALIA) and the brain. Differentiation, Sex,Sexual Differentiation,Differentiation, Sexual

Related Publications

C M McCormick, and B F Furey, and M Child, and M J Sawyer, and S M Donohue
August 2010, Fa yi xue za zhi,
C M McCormick, and B F Furey, and M Child, and M J Sawyer, and S M Donohue
April 2016, Psychoneuroendocrinology,
C M McCormick, and B F Furey, and M Child, and M J Sawyer, and S M Donohue
June 2001, Experimental biology and medicine (Maywood, N.J.),
C M McCormick, and B F Furey, and M Child, and M J Sawyer, and S M Donohue
May 2000, Archives of disease in childhood. Fetal and neonatal edition,
C M McCormick, and B F Furey, and M Child, and M J Sawyer, and S M Donohue
October 2001, The Journal of parasitology,
C M McCormick, and B F Furey, and M Child, and M J Sawyer, and S M Donohue
February 2006, Obesity (Silver Spring, Md.),
C M McCormick, and B F Furey, and M Child, and M J Sawyer, and S M Donohue
October 2015, Endocrinology,
C M McCormick, and B F Furey, and M Child, and M J Sawyer, and S M Donohue
January 1995, Toxicology letters,
C M McCormick, and B F Furey, and M Child, and M J Sawyer, and S M Donohue
August 2014, Journal of endocrinological investigation,
C M McCormick, and B F Furey, and M Child, and M J Sawyer, and S M Donohue
May 1998, Psychoneuroendocrinology,
Copied contents to your clipboard!