Inference for odds ratio regression models with sparse dependent data. 1998

J J Hanfelt, and K Y Liang
Department of Biomathematics and Biostatistics, Georgetown University, Washington, D.C. 20007, USA. hanfelt@gunet.georgetown.edu

Suppose the number of 2 x 2 tables is large relative to the average table size, and the observations within a given table are dependent, as occurs in longitudinal or family-based case-control studies. We consider fitting regression models to the odds ratios using table-level covariates. The focus is on methods to obtain valid inferences for the regression parameters beta when the dependence structure is unknown. In this setting, Liang (1985, Biometrika 72, 678-682) has shown that inference based on the noncentral hypergeometric likelihood is sensitive to misspecification of the dependence structure. In contrast, estimating functions based on the Mantel-Haenszel method yield consistent estimators of beta. We show here that, under the estimating function approach, Wald's confidence interval for beta performs well in multiplicative regression models but unfortunately has poor coverage probabilities when an additive regression model is adopted. As an alternative to Wald inference, we present a Mantel-Haenszel quasi-likelihood function based on integrating the Mantel-Haenszel estimating function. A simulation study demonstrates that, in medium-sized samples, the Mantel-Haenszel quasi-likelihood approach yields better inferences than other methods under an additive regression model and inferences comparable to Wald's method under a multiplicative model. We illustrate the use of this quasi-likelihood method in a study of the familial risk of schizophrenia.

UI MeSH Term Description Entries
D008297 Male Males
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001699 Biometry The use of statistical and mathematical methods to analyze biological observations and phenomena. Biometric Analysis,Biometrics,Analyses, Biometric,Analysis, Biometric,Biometric Analyses
D012307 Risk Factors An aspect of personal behavior or lifestyle, environmental exposure, inborn or inherited characteristic, which, based on epidemiological evidence, is known to be associated with a health-related condition considered important to prevent. Health Correlates,Risk Factor Scores,Risk Scores,Social Risk Factors,Population at Risk,Populations at Risk,Correlates, Health,Factor, Risk,Factor, Social Risk,Factors, Social Risk,Risk Factor,Risk Factor Score,Risk Factor, Social,Risk Factors, Social,Risk Score,Score, Risk,Score, Risk Factor,Social Risk Factor
D012559 Schizophrenia A severe emotional disorder of psychotic depth characteristically marked by a retreat from reality with delusion formation, HALLUCINATIONS, emotional disharmony, and regressive behavior. Dementia Praecox,Schizophrenic Disorders,Disorder, Schizophrenic,Disorders, Schizophrenic,Schizophrenias,Schizophrenic Disorder
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model
D016013 Likelihood Functions Functions constructed from a statistical model and a set of observed data which give the probability of that data for various values of the unknown model parameters. Those parameter values that maximize the probability are the maximum likelihood estimates of the parameters. Likelihood Ratio Test,Maximum Likelihood Estimates,Estimate, Maximum Likelihood,Estimates, Maximum Likelihood,Function, Likelihood,Functions, Likelihood,Likelihood Function,Maximum Likelihood Estimate,Test, Likelihood Ratio
D016015 Logistic Models Statistical models which describe the relationship between a qualitative dependent variable (that is, one which can take only certain discrete values, such as the presence or absence of a disease) and an independent variable. A common application is in epidemiology for estimating an individual's risk (probability of a disease) as a function of a given risk factor. Logistic Regression,Logit Models,Models, Logistic,Logistic Model,Logistic Regressions,Logit Model,Model, Logistic,Model, Logit,Models, Logit,Regression, Logistic,Regressions, Logistic

Related Publications

J J Hanfelt, and K Y Liang
October 2018, Biostatistics (Oxford, England),
J J Hanfelt, and K Y Liang
September 1991, Biometrics,
J J Hanfelt, and K Y Liang
June 2023, Journal of epidemiology,
J J Hanfelt, and K Y Liang
December 1986, Biometrics,
J J Hanfelt, and K Y Liang
January 1991, Genetic epidemiology,
J J Hanfelt, and K Y Liang
October 1998, Journal of clinical epidemiology,
J J Hanfelt, and K Y Liang
July 2010, Journal of statistical planning and inference,
J J Hanfelt, and K Y Liang
March 2023, Journal of biopharmaceutical statistics,
J J Hanfelt, and K Y Liang
October 2016, Statistical methods in medical research,
J J Hanfelt, and K Y Liang
October 2011, Biostatistics (Oxford, England),
Copied contents to your clipboard!