Further characterization of the glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. The role of the glucocorticoid receptor-binding sites. 1998

D K Scott, and P E Strömstedt, and J C Wang, and D K Granner
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA.

Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the rate-limiting step of gluconeogenesis. The activity of this enzyme is controlled by several hormones, including glucocorticoids, glucagon, retinoic acid, and insulin, that principally affect the rate of transcription of the PEPCK gene. Glucocorticoids induce PEPCK gene transcription through a complex glucocorticoid response unit that consists of, from 5' to 3', accessory factor elements AF1 and AF2; two noncanonical glucocorticoid receptor-binding sites, GR1 and GR2; a third accessory factor element, AF3; and a cAMP-response element, CRE. A complete glucocorticoid response is dependent on the presence of both GR-binding sites, all three accessory elements, and the CRE. In this study we assess the relative roles of GR1 and GR2 in the context of the glucocorticoid response unit and use a combination of binding and function assays to compare GR1 and GR2 to glucocorticoid response elements (GREs) that conform closely to the consensus sequence. The relative binding affinity of GR follows the order: consensus GRE >> GR1 > GR2. Mutations that disrupt the binding of GR to GR1 result in a major reduction of the glucocorticoid response, whereas similar mutations of GR2 have a much smaller effect. Unlike the simple consensus GRE, neither GR1 nor GR2 mediate a glucocorticoid response through a heterologous promoter. The accessory elements appear to have different functional roles. AF2 is still needed for a maximal glucocorticoid response when GR1 is converted to a high-affinity GR-binding element, but AF1 and AF3 are not required.

UI MeSH Term Description Entries
D010730 Phosphoenolpyruvate Carboxylase An enzyme with high affinity for carbon dioxide. It catalyzes irreversibly the formation of oxaloacetate from phosphoenolpyruvate and carbon dioxide. This fixation of carbon dioxide in several bacteria and some plants is the first step in the biosynthesis of glucose. EC 4.1.1.31. Carboxylase, Phosphoenolpyruvate
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D005938 Glucocorticoids A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system. Glucocorticoid,Glucocorticoid Effect,Glucorticoid Effects,Effect, Glucocorticoid,Effects, Glucorticoid
D006528 Carcinoma, Hepatocellular A primary malignant neoplasm of epithelial liver cells. It ranges from a well-differentiated tumor with EPITHELIAL CELLS indistinguishable from normal HEPATOCYTES to a poorly differentiated neoplasm. The cells may be uniform or markedly pleomorphic, or form GIANT CELLS. Several classification schemes have been suggested. Hepatocellular Carcinoma,Hepatoma,Liver Cancer, Adult,Liver Cell Carcinoma,Liver Cell Carcinoma, Adult,Adult Liver Cancer,Adult Liver Cancers,Cancer, Adult Liver,Cancers, Adult Liver,Carcinoma, Liver Cell,Carcinomas, Hepatocellular,Carcinomas, Liver Cell,Cell Carcinoma, Liver,Cell Carcinomas, Liver,Hepatocellular Carcinomas,Hepatomas,Liver Cancers, Adult,Liver Cell Carcinomas
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D016384 Consensus Sequence A theoretical representative nucleotide or amino acid sequence in which each nucleotide or amino acid is the one which occurs most frequently at that site in the different sequences which occur in nature. The phrase also refers to an actual sequence which approximates the theoretical consensus. A known CONSERVED SEQUENCE set is represented by a consensus sequence. Commonly observed supersecondary protein structures (AMINO ACID MOTIFS) are often formed by conserved sequences. Consensus Sequences,Sequence, Consensus,Sequences, Consensus

Related Publications

D K Scott, and P E Strömstedt, and J C Wang, and D K Granner
September 1990, Molecular and cellular biology,
D K Scott, and P E Strömstedt, and J C Wang, and D K Granner
March 1993, The Journal of biological chemistry,
D K Scott, and P E Strömstedt, and J C Wang, and D K Granner
October 2001, The Journal of biological chemistry,
D K Scott, and P E Strömstedt, and J C Wang, and D K Granner
January 1988, Molecular and cellular biology,
D K Scott, and P E Strömstedt, and J C Wang, and D K Granner
May 1994, The Journal of biological chemistry,
D K Scott, and P E Strömstedt, and J C Wang, and D K Granner
October 1998, Molecular endocrinology (Baltimore, Md.),
D K Scott, and P E Strömstedt, and J C Wang, and D K Granner
October 2005, The Journal of biological chemistry,
D K Scott, and P E Strömstedt, and J C Wang, and D K Granner
May 1994, Molecular endocrinology (Baltimore, Md.),
D K Scott, and P E Strömstedt, and J C Wang, and D K Granner
August 1995, The Biochemical journal,
Copied contents to your clipboard!