Both T- and L-type Ca2+ channels can contribute to excitation-contraction coupling in cardiac Purkinje cells. 1998

Z Zhou, and C T January
Department of Medicine, The University of Wisconsin, Madison 53792, USA.

Although L-type Ca2+ channels have been shown to play a central role in cardiac excitation-contraction (E-C) coupling, little is known about the role of T-type Ca2+ channels in this process. We used the amphotericin B perforated patch method to study the possible role of T-type Ca2+ current in E-C coupling in isolated canine Purkinje myocytes where both Ca2+ currents are large. T-type Ca2+ current was separated from L-type Ca2+ current using protocols employing the different voltage dependencies of the channel types and their different sensitivities to pharmacological blockade. We showed that Ca2+ admitted through either T- or L-type Ca2+ channels is capable of initiating contraction and that the contractions depended on Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR). The contractions, however, had different properties. Those initiated by Ca2+ entry through T-type Ca2+ channels had a longer delay to the onset of shortening, slower rates of shortening and relaxation, lower peak shortening, and longer time to peak shortening. These differences were present even when L-type Ca2+ current amplitude, or charge entry, was less than that of T-type Ca2+ current, suggesting that Ca2+ entry through the T-type Ca2+ channel is a less effective signal transduction mechanism to the SR than is Ca2+ entry through the L-type Ca2+ channel. We conclude that under our experimental conditions in cardiac Purkinje cells Ca2+ entry through the T-type Ca2+ channel can activate cell contraction. However, Ca2+ entry through the L-type Ca2+ channel is a more effective signal transduction mechanism. Our findings support the concept that different structural relationships exist between these channel types and the SR Ca2+ release mechanism.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009532 Nickel A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology

Related Publications

Z Zhou, and C T January
August 1991, Current opinion in cell biology,
Z Zhou, and C T January
February 2004, Shi yan sheng wu xue bao,
Z Zhou, and C T January
May 1989, The American journal of physiology,
Z Zhou, and C T January
March 2010, Proceedings of the National Academy of Sciences of the United States of America,
Z Zhou, and C T January
October 1992, Cardiovascular research,
Z Zhou, and C T January
July 1979, Nature,
Copied contents to your clipboard!