Modulation of E2F activity via signaling through surface IgM and CD40 receptors in WEHI-231 B lymphoma cells. 1998

E W Lam, and M S Choi, and J van der Sman, and S A Burbidge, and G G Klaus
Ludwig Institute for Cancer Research and Department of Medical Microbiology, Imperial College School of Medicine at St Mary's, Norfolk Place, London W2 1PG, United Kingdom. eric.lam@ic.ac.uk

Stimulation of the phenotypically immature B cell lymphoma WEHI-231 with anti-IgM induces G1 arrest followed by apoptotic cell death, which can be reversed by stimulation via the CD40 receptor. Here, we show that cells expressing bcl-xL (WEHI-bcl-xL) arrest at G0/G1 following culture with anti-IgM but do not undergo apoptosis. These arrested cells can be induced to reenter the cell cycle by ligation of CD40. We have therefore used these cells as a model to study the regulation of the transcription factor E2F, which is critically involved in transit through the cell cycle. We found that anti-IgM treatment induces the appearance of an inhibitory DNA binding complex containing the pRB-related pocket protein p130 together with E2F and a concomitant decrease in "free" E2F, consisting of E2F1 and its partner DP1; these effects were reversed following stimulation via CD40. These changes in free E2F levels were regulated by changes in E2F1 gene transcription, which is at least partly a result of control of E2F1 promoter activity through its E2F binding sites. Transient transfection experiments showed that either E2F1 or the viral oncoprotein E1A, which sequesters pocket proteins, including p130, overcame anti-IgM-induced cell cycle arrest in WEHI-bcl-xL. Taken together, these results indicate that in WEHI-231 sIgM ligation induces the accumulation of hypophosphorylated p130 with consequent inhibition of E2F1 gene transcription and cell cycle arrest. Conversely, ligation of CD40 causes hyperphosphorylation of p130, thereby releasing the repression of E2F1 and other E2F-regulated genes, enabling the cells to reenter the cycle. These results, therefore, provide novel insights into the mechanisms whereby antigen receptors on immature B cells deliver inhibitory signals (leading to negative selection of self-reactive B cells) and how these signals can be modulated by positive signals generated via CD40.

UI MeSH Term Description Entries
D007075 Immunoglobulin M A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally was called a macroglobulin. Gamma Globulin, 19S,IgM,IgM Antibody,IgM1,IgM2,19S Gamma Globulin,Antibody, IgM
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011961 Receptors, Fc Molecules found on the surface of some, but not all, B-lymphocytes, T-lymphocytes, and macrophages, which recognize and combine with the Fc (crystallizable) portion of immunoglobulin molecules. Fc Receptors,Fc Receptor,Receptor, Fc
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E W Lam, and M S Choi, and J van der Sman, and S A Burbidge, and G G Klaus
October 1999, European journal of immunology,
E W Lam, and M S Choi, and J van der Sman, and S A Burbidge, and G G Klaus
August 2004, Journal of immunology (Baltimore, Md. : 1950),
E W Lam, and M S Choi, and J van der Sman, and S A Burbidge, and G G Klaus
November 1993, European journal of immunology,
E W Lam, and M S Choi, and J van der Sman, and S A Burbidge, and G G Klaus
April 1995, European journal of immunology,
E W Lam, and M S Choi, and J van der Sman, and S A Burbidge, and G G Klaus
March 2004, Cell death and differentiation,
E W Lam, and M S Choi, and J van der Sman, and S A Burbidge, and G G Klaus
September 1994, European journal of immunology,
E W Lam, and M S Choi, and J van der Sman, and S A Burbidge, and G G Klaus
October 1999, European journal of immunology,
E W Lam, and M S Choi, and J van der Sman, and S A Burbidge, and G G Klaus
June 1987, Journal of immunology (Baltimore, Md. : 1950),
E W Lam, and M S Choi, and J van der Sman, and S A Burbidge, and G G Klaus
April 2005, Acta pharmacologica Sinica,
E W Lam, and M S Choi, and J van der Sman, and S A Burbidge, and G G Klaus
April 1999, Molecular immunology,
Copied contents to your clipboard!