The aminosterol antibiotic squalamine permeabilizes large unilamellar phospholipid vesicles. 1998

B S Selinsky, and Z Zhou, and K G Fojtik, and S R Jones, and N R Dollahon, and A E Shinnar
Department of Chemistry, Villanova University, Villanova, PA 19085-1699, USA. selinsky@rs6chem.vill.edu

The ability of the shark antimicrobial aminosterol squalamine to induce the leakage of polar fluorescent dyes from large unilamellar phospholipid vesicles (LUVs) has been measured. Micromolar squalamine causes leakage of carboxyfluorescein (CF) from vesicles prepared from the anionic phospholipids phosphatidylglycerol (PG), phosphatidylserine (PS), and cardiolipin. Binding analyses based on the leakage data show that squalamine has its highest affinity to phosphatidylglycerol membranes, followed by phosphatidylserine and cardiolipin membranes. Squalamine will also induce the leakage of CF from phosphatidylcholine (PC) LUVs at low phospholipid concentrations. At high phospholipid concentrations, the leakage of CF from PC LUVs deviates from a simple dose-response relationship, and it appears that some of the squalamine can no longer cause leakage. Fluorescent dye leakage generated by squalamine is graded, suggesting the formation of a discrete membrane pore rather than a generalized disruption of vesicular membranes. By using fluorescently labeled dextrans of different molecular weight, material with molecular weight </=4000 g/mol is released from vesicles by squalamine, but material with molecular weight >/=10,000 is retained. Negative stain electron microscopy of squalamine-treated LUVs shows that squalamine decreases the average vesicular size in a concentration-dependent manner. Squalamine decreases the size of vesicles containing anionic phospholipid at a lower squalamine/lipid molar ratio than pure PC LUVs. In a centrifugation assay, squalamine solubilizes phospholipid, but only at significantly higher squalamine/phospholipid ratios than required for either dye leakage or vesicle size reduction. Squalamine solubilizes PC at lower squalamine/phospholipid ratios than PG. We suggest that squalamine complexes with phospholipid to form a discrete structure within the bilayers of LUVs, resulting in the transient leakage of small encapsulated molecules. At higher squalamine/phospholipid ratios, these structures release from the bilayers and aggregate to form either new vesicles or squalamine/phospholipid mixed micelles.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009281 Naphthalenes Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011726 Pyridinium Compounds Derivatives of PYRIDINE containing a cation C5H5NH or radical C5H6N. Compounds, Pyridinium
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus

Related Publications

B S Selinsky, and Z Zhou, and K G Fojtik, and S R Jones, and N R Dollahon, and A E Shinnar
February 1993, Proceedings of the National Academy of Sciences of the United States of America,
B S Selinsky, and Z Zhou, and K G Fojtik, and S R Jones, and N R Dollahon, and A E Shinnar
May 1992, Biochemistry,
B S Selinsky, and Z Zhou, and K G Fojtik, and S R Jones, and N R Dollahon, and A E Shinnar
February 1991, Biochemistry,
B S Selinsky, and Z Zhou, and K G Fojtik, and S R Jones, and N R Dollahon, and A E Shinnar
May 1989, Biochemistry,
B S Selinsky, and Z Zhou, and K G Fojtik, and S R Jones, and N R Dollahon, and A E Shinnar
March 1986, The Journal of biological chemistry,
B S Selinsky, and Z Zhou, and K G Fojtik, and S R Jones, and N R Dollahon, and A E Shinnar
March 2002, Steroids,
B S Selinsky, and Z Zhou, and K G Fojtik, and S R Jones, and N R Dollahon, and A E Shinnar
July 1983, Biochimica et biophysica acta,
B S Selinsky, and Z Zhou, and K G Fojtik, and S R Jones, and N R Dollahon, and A E Shinnar
August 1983, Biochimica et biophysica acta,
B S Selinsky, and Z Zhou, and K G Fojtik, and S R Jones, and N R Dollahon, and A E Shinnar
March 2014, Plastic and reconstructive surgery,
B S Selinsky, and Z Zhou, and K G Fojtik, and S R Jones, and N R Dollahon, and A E Shinnar
July 2020, Antibiotics (Basel, Switzerland),
Copied contents to your clipboard!