Genetic analysis of iron uptake in the yeast Saccharomyces cerevisiae. 1998

A Dancis
Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.

OBJECTIVE We used the methods of yeast genetics to identify genes involved in acquisition of iron by eukaryotic cells. METHODS Mutants were identified with defects in cellular iron uptake. These were organized into an upstream group and a downstream group. The upstream group was involved in the delivery of copper to the multicopper oxidase FET3. Mutants of this group were characterized by defective iron uptake that could be corrected by exposure of the cells to large amounts of copper. The downstream group was more directly involved in iron uptake. Mutant phenotypes from these genes could not be corrected by copper exposure. RESULTS Genes in the upstream group encoded the regulator of copper transport, MAC1, and two copper transporters, CTR1 and CCC2. Genes in the downstream group encoded the multicopper oxidase FET3 and its partner the iron permease FTR1. In addition, the downstream genes encoded the surface reductases FRE1 and FRE2 and the iron regulatory protein AFT1. CONCLUSIONS The iron and copper uptake processes in yeast intersect because the FET3 gene encodes a multicopper oxidase that is required for iron transport. In human beings, an analogous function may be served by ceruloplasmin, a multicopper oxidase with a role in iron homeostasis.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002570 Ceruloplasmin A multi-copper blood FERROXIDASE involved in iron and copper homeostasis and inflammation. Caeruloplasmin,Ferroxidase,Ceruloplasmin Ferroxidase,Ceruloplasmin Oxidase,Ferroxidase I,alpha(2)-Ceruloplasmin,Ferroxidase, Ceruloplasmin,Oxidase, Ceruloplasmin
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D029701 Saccharomyces cerevisiae Proteins Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. Baker's Yeast Proteins,S cerevisiae Proteins
Copied contents to your clipboard!