IL-4-induced STAT6 suppresses IFN-gamma-stimulated STAT1-dependent transcription in mouse macrophages. 1997

Y Ohmori, and T A Hamilton
Department of Immunology, The Cleveland Clinic Foundation, OH 44195, USA.

IL-4 suppresses the IFN-gamma-induced expression of the IFN regulatory factor-1 (IRF-1) gene, and this suppression is attenuated by increasing the amount of IFN-gamma. The effects of IFN-gamma and IL-4 on transcription of a reporter gene under control of a 1.3-kb fragment from the IRF-1 gene promoter or the STAT binding element (SBE) from this gene in the context of a heterologous promoter are similar to their effects on the endogenous IRF-1 gene. IFN-gamma-dependent transcription of reporter gene is suppressed by IL-4, but IL-4 alone has no trans-activating function. IL-4 treatment does not inhibit the tyrosine phosphorylation or nuclear translocation of IFN-gamma-activated STAT1. Rather, IFN-gamma and IL-4 independently activate STAT1 and STAT6, respectively, and both proteins bind to the IRF-1 SBE in homodimeric form. The affinity of STAT1 for the IRF-1 SBE is higher than the affinity of STAT6, as measured by competition with unlabeled oligonucleotide. These observations suggest that IL-4 may suppress IFN-gamma-stimulated transcription of the IRF-1 gene by activation of STAT6, which can compete with STAT1 for occupancy of the IRF-1 SBE when STAT1 levels are low. Suppression may be attenuated as the quantity of STAT1 relative to that of STAT6 increases in cells treated with increasing amounts of IFN-gamma and displaces STAT6.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015534 Trans-Activators Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins. Nuclear Trans-Acting Factor,Trans-Acting Factors,Trans-Acting Factor,Trans-Activator,Transactivator,Transactivators,Factor, Nuclear Trans-Acting,Factor, Trans-Acting,Factors, Trans-Acting,Nuclear Trans Acting Factor,Trans Acting Factor,Trans Acting Factors,Trans Activator,Trans Activators,Trans-Acting Factor, Nuclear
D015847 Interleukin-4 A soluble factor produced by activated T-LYMPHOCYTES that induces the expression of MHC CLASS II GENES and FC RECEPTORS on B-LYMPHOCYTES and causes their proliferation and differentiation. It also acts on T-lymphocytes, MAST CELLS, and several other hematopoietic lineage cells. B-Cell Growth Factor-I,B-Cell Stimulatory Factor-1,Binetrakin,IL-4,Mast Cell Growth Factor-2,B Cell Stimulatory Factor-1,B-Cell Growth Factor-1,B-Cell Proliferating Factor,B-Cell Stimulating Factor-1,B-Cell Stimulatory Factor 1,BCGF-1,BSF-1,IL4,MCGF-2,B Cell Growth Factor 1,B Cell Growth Factor I,B Cell Proliferating Factor,B Cell Stimulating Factor 1,B Cell Stimulatory Factor 1,Interleukin 4,Mast Cell Growth Factor 2
D050794 STAT1 Transcription Factor A signal transducer and activator of transcription that mediates cellular responses to INTERFERONS. Stat1 interacts with P53 TUMOR SUPPRESSOR PROTEIN and regulates expression of GENES involved in growth control and APOPTOSIS. Gamma-Activated Factor, 91 kDa,STAT-91 Protein,STAT-91 Transcription Factor,STAT1 Protein,STAT91 Transcription Factor,Signal Transducer and Activator of Transcription 1,Transcription Factor STAT91,Gamma Activated Factor, 91 kDa,STAT 91 Protein,STAT 91 Transcription Factor,Transcription Factor, STAT-91,Transcription Factor, STAT1,Transcription Factor, STAT91

Related Publications

Y Ohmori, and T A Hamilton
February 2005, Journal of immunology (Baltimore, Md. : 1950),
Y Ohmori, and T A Hamilton
March 1992, Journal of immunology (Baltimore, Md. : 1950),
Y Ohmori, and T A Hamilton
February 2004, Biochemical and biophysical research communications,
Y Ohmori, and T A Hamilton
April 1999, Journal of immunology (Baltimore, Md. : 1950),
Y Ohmori, and T A Hamilton
September 2005, Journal of immunology (Baltimore, Md. : 1950),
Y Ohmori, and T A Hamilton
March 1990, Journal of immunology (Baltimore, Md. : 1950),
Y Ohmori, and T A Hamilton
July 2001, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
Y Ohmori, and T A Hamilton
December 2004, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!