Selective Pneumocystis carinii dihydrofolate reductase inhibitors: design, synthesis, and biological evaluation of new 2,4-diamino-5-substituted-furo[2,3-d]pyrimidines. 1998

A Gangjee, and X Guo, and S F Queener, and V Cody, and N Galitsky, and J R Luft, and W Pangborn
Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.

Nonclassical antifolates, 2,4-diamino-5-substituted-furo[2, 3-d]pyrimidines 3-12 with bridge region variations of C8-S9, C8-N9, and C8-O9 and 1-naphthyl, 2-naphthyl, 2-phenoxyphenyl, 4-phenoxyphenyl, and 2-biphenyl side chains were synthesized as phenyl ring appended analogues of previously reported 2, 4-diamino-5-(anilinomethyl)furo[2,3-d]pyrimidines. The phenyl ring appended analogues were designed to specifically interact with Phe69 of dihydrofolate reductase (DHFR) from Pneumocystis carinii (pc) to afford selective inhibitors of pcDHFR. Additional substituted phenyl side chains which include 2,5-dichloro, 3,4-dichloro, 3,4,5-trichloro, 3-methoxy, and 2,5-dimethoxy analogues 13-17 were also synthesized. The compounds were prepared by nucleophilic displacement of 2,4-diamino-5-(chloromethyl)furo[2,3-d]pyrimidine(2) with the appropriate thiol, amine, or naphthol. Compound 2 was obtained from 2,4-diamino-6-hydroxypyrimidine and 1, 3-dichloroacetone. The compounds were evaluated as inhibitors against DHFR from P. carinii, Toxoplasma gondii, and rat liver. Two analogues, 2,4-diamino-5-[(2'-naphthylthio)methyl]furo[2, 3-d]pyrimidine (5) and 2,4-diamino-5-[(2'-phenylanilino)methyl]furo[2,3-d]pyrimidine (11) showed significant selectivity and potency for pcDHFR compared to trimethoprim. The X-ray crystal structure of 5 with pcDHFR was also carried out, which corroborated the design rationale and indicated a hydrophobic interaction of the naphthalene ring of 5 and Phe69 of pcDHFR which is responsible, in part, for the more than 18-fold selectivity of 5 for pcDHFR as compared with rat liver DHFR.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009281 Naphthalenes Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D011010 Pneumocystis A genus of ascomycetous FUNGI, family Pneumocystidaceae, order Pneumocystidales. It includes various host-specific species causing PNEUMOCYSTIS PNEUMONIA in humans and other MAMMALS. Pneumocysti
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D005493 Folic Acid Antagonists Inhibitors of the enzyme, dihydrofolate reductase (TETRAHYDROFOLATE DEHYDROGENASE), which converts dihydrofolate (FH2) to tetrahydrofolate (FH4). They are frequently used in cancer chemotherapy. (From AMA, Drug Evaluations Annual, 1994, p2033) Antifolate,Antifolates,Dihydrofolate Reductase Inhibitor,Folic Acid Antagonist,Dihydrofolate Reductase Inhibitors,Folic Acid Metabolism Inhibitors,Acid Antagonist, Folic,Acid Antagonists, Folic,Antagonist, Folic Acid,Antagonists, Folic Acid,Inhibitor, Dihydrofolate Reductase,Inhibitors, Dihydrofolate Reductase,Reductase Inhibitor, Dihydrofolate,Reductase Inhibitors, Dihydrofolate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

A Gangjee, and X Guo, and S F Queener, and V Cody, and N Galitsky, and J R Luft, and W Pangborn
July 2004, Journal of medicinal chemistry,
A Gangjee, and X Guo, and S F Queener, and V Cody, and N Galitsky, and J R Luft, and W Pangborn
November 2001, Bioorganic & medicinal chemistry,
A Gangjee, and X Guo, and S F Queener, and V Cody, and N Galitsky, and J R Luft, and W Pangborn
January 1993, Advances in experimental medicine and biology,
A Gangjee, and X Guo, and S F Queener, and V Cody, and N Galitsky, and J R Luft, and W Pangborn
May 1995, Journal of medicinal chemistry,
A Gangjee, and X Guo, and S F Queener, and V Cody, and N Galitsky, and J R Luft, and W Pangborn
February 1999, Chemical & pharmaceutical bulletin,
A Gangjee, and X Guo, and S F Queener, and V Cody, and N Galitsky, and J R Luft, and W Pangborn
June 1995, Journal of medicinal chemistry,
A Gangjee, and X Guo, and S F Queener, and V Cody, and N Galitsky, and J R Luft, and W Pangborn
October 2008, Journal of medicinal chemistry,
A Gangjee, and X Guo, and S F Queener, and V Cody, and N Galitsky, and J R Luft, and W Pangborn
January 2003, Bioorganic & medicinal chemistry,
Copied contents to your clipboard!