Azapeptides as inhibitors and active site titrants for cysteine proteinases. 1998

R Xing, and R P Hanzlik
Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045-2506, USA.

Ester and amide derivatives of alpha-azaglycine (carbazic acid, H2NNHCOOH), alpha-azaalanine, and alpha-azaphenylalanine (i.e., Ac-l-Phe-NHN(R)CO-X, where X = H, CH3, or CH2Ph, respectively) were synthesized and evaluated as inhibitors of the cysteine proteinases papain and cathepsin B. The ester derivatives inactivated papain and cathepsin B at rates which increased dramatically with leaving group hydrophobicity and electronegativity. For example, with 8 (R = H, X = OPh) the apparent second-order rate constant for papain inactivation was 67 600 M-1 s-1. Amide and P1-thioamide derivatives do not inactivate papain, nor are they substrates; instead they are weak competitive inhibitors (0.2 mM < Ki < 4 mM). Inactivation of papain involves carbamoylation of the enzyme, as demonstrated by electrospray mass spectrometry. Active site titration indicated a 1:1 stoichiometry for the inactivation of papain with 8, and both inactivated papain and cathepsin B are highly resistant to reactivation by dialysis (t1/2 > 24 h at 4 degrees C). Azaalanine derivatives Ac-L-Phe-NHN(CH3)CO-X inactivate papain ca. 400- 900-fold more slowly than their azaglycine analogues, consistent with the planar configuration at Nalpha of the P1 residue and the very substantial stereoselectivity of papain for L- vs D- residues at the P1 position of its substrates. Azaglycine derivative 9 (R = H, X = OC6H4NO2-p) inactivates papain extremely rapidly (>70 000 M-1 s-1), but it also decomposes rapidly in buffer with release of nitrophenol (kobs = 0.13 min-1); under the same conditions 8 shows <7% hydrolysis over 24 h. This nitrophenol release probably involves cyclization to an oxadiazolone since 17 (R = CH3, X = OC6H4NO2-p), which cannot form an isocyanate, releases nitrophenol almost as rapidly (kobs = 0.028 min-1). Cathepsin C, another cysteine proteinase with a rather different substrate specificity (i.e., aminopeptidase), was not inactivated by 8, indicating that the inactivation of papain and cathepsin B by azapeptide esters is a specific process. Their ease of synthesis coupled with good solution stability suggests that azapeptide esters may be useful as active site titrants of cysteine proteinases and probes of their biological function in vivo.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010206 Papain A proteolytic enzyme obtained from Carica papaya. It is also the name used for a purified mixture of papain and CHYMOPAPAIN that is used as a topical enzymatic debriding agent. EC 3.4.22.2. Tromasin
D002401 Cathepsin B A lysosomal cysteine proteinase with a specificity similar to that of PAPAIN. The enzyme is present in a variety of tissues and is important in many physiological and pathological processes. In pathology, cathepsin B has been found to be involved in DEMYELINATION; EMPHYSEMA; RHEUMATOID ARTHRITIS, and NEOPLASM INVASIVENESS. Cathepsin B-Like Proteinase,Cathepsin B1,Cathepsin B Like Proteinase,Proteinase, Cathepsin B-Like
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004952 Esters Compounds derived from organic or inorganic acids in which at least one hydroxyl group is replaced by an –O-alkyl or another organic group. They can be represented by the structure formula RCOOR’ and are usually formed by the reaction between an acid and an alcohol with elimination of water. Ester
D006834 Hydrazines Substituted derivatives of hydrazine (formula H2N-NH2). Hydrazide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

R Xing, and R P Hanzlik
February 2006, Journal of enzyme inhibition and medicinal chemistry,
R Xing, and R P Hanzlik
January 1979, International journal of peptide and protein research,
R Xing, and R P Hanzlik
January 1994, Methods in enzymology,
R Xing, and R P Hanzlik
January 1992, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists,
R Xing, and R P Hanzlik
January 1988, Postepy biochemii,
R Xing, and R P Hanzlik
January 1989, Journal of enzyme inhibition,
R Xing, and R P Hanzlik
May 1988, Biological chemistry Hoppe-Seyler,
Copied contents to your clipboard!