Gemcitabine 5'-triphosphate is a stoichiometric mechanism-based inhibitor of Lactobacillus leichmannii ribonucleoside triphosphate reductase: evidence for thiyl radical-mediated nucleotide radical formation. 1998

D J Silva, and J Stubbe, and V Samano, and M J Robins
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.

Ribonucleoside triphosphate reductase (RTPR) from Lactobacillus leichmannii utilizes adenosylcobalamin and catalyzes the conversion of nucleoside triphosphates to deoxynucleoside triphosphates. One equivalent of 2',2'-difluoro-2'-deoxycytidine 5'-triphosphate, F2dCTP, rapidly inactivates RTPR. Analysis of the reaction products reveals that inactivation is accompanied by release of two fluoride ions and 0.84 equiv of 5'-deoxyadenosine and attachment of 1 equiv of corrin covalently to an active-site cysteine residue of RTPR. No cytosine release was detected. Proteolysis of corrin-labeled RTPR with endoproteinase Glu-C and peptide mapping at pH 5.8 revealed that C419 was predominantly modified. The kinetics of the inactivation have been examined by stopped-flow (SF) UV-vis spectroscopy and rapid freeze quench (RFQ) electron paramagnetic resonance (EPR) spectroscopy. Monitoring DeltaA525 nm shows that cob(II)alamin is formed with an apparent kobs of 50 s-1, only 2. 5-fold slower than a similar experiment carried out with cytidine 5'-triphosphate (CTP). The same reaction mixture was thus quenched at times from 22 ms to 30 s and examined by EPR spectroscopy. At early time points the EPR spectrum resembled a thiyl radical exchange coupled to cob(II)alamin. From 22 to 255 ms the total spin concentration remained unchanged at 1.4 spins/RTPR, twice that predicted by the amount of cob(II)alamin determined by SF. However, with time the signal attributed to the thiyl radical-cob(II)alamin disappears and new signal(s) with broad feature(s) at g = 2.33 and a sharp feature at g = 2.00 appeared, suggesting formation of cob(II)alamin and a nucleotide-based radical with only dipolar interactions. These studies have been interpreted to support the proposal that an RTPR-based thiyl radical can give rise to a nucleotide-based radical.

UI MeSH Term Description Entries
D007778 Lactobacillus A genus of gram-positive, microaerophilic, rod-shaped bacteria occurring widely in nature. Its species are also part of the many normal flora of the mouth, intestinal tract, and vagina of many mammals, including humans. Lactobacillus species are homofermentative and ferment a broad spectrum of carbohydrates often host-adapted but do not ferment PENTOSES. Most members were previously assigned to the Lactobacillus delbrueckii group. Pathogenicity from this genus is rare.
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D003596 Cytosine A pyrimidine base that is a fundamental unit of nucleic acids.
D003839 Deoxyadenosines Adenosine molecules which can be substituted in any position, but are lacking one hydroxyl group in the ribose part of the molecule. Adenine Deoxyribonucleosides,Adenylyldeoxyribonucleosides,Deoxyadenosine Derivatives,Deoxyribonucleosides, Adenine,Derivatives, Deoxyadenosine
D003841 Deoxycytidine A nucleoside component of DNA composed of CYTOSINE and DEOXYRIBOSE. Cytosine Deoxyribonucleoside,Cytosine Deoxyriboside,Deoxyribonucleoside, Cytosine,Deoxyriboside, Cytosine
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme

Related Publications

D J Silva, and J Stubbe, and V Samano, and M J Robins
January 1978, Methods in enzymology,
D J Silva, and J Stubbe, and V Samano, and M J Robins
May 1981, The Journal of biological chemistry,
D J Silva, and J Stubbe, and V Samano, and M J Robins
December 1965, Biochemical and biophysical research communications,
D J Silva, and J Stubbe, and V Samano, and M J Robins
October 1998, Current opinion in chemical biology,
D J Silva, and J Stubbe, and V Samano, and M J Robins
February 1974, Biochemistry,
D J Silva, and J Stubbe, and V Samano, and M J Robins
October 1965, Biochemical and biophysical research communications,
D J Silva, and J Stubbe, and V Samano, and M J Robins
October 1966, Biochemical and biophysical research communications,
Copied contents to your clipboard!