General base catalysis by the phosphatidylcholine-preferring phospholipase C from Bacillus cereus: the role of Glu4 and Asp55. 1998

S F Martin, and P J Hergenrother
Department of Chemistry and Biochemistry, The University of Texas at Austin 78712, USA. sfmartin@mail.utexas.edu

To assess what roles the active site residues Glu4 and Asp55 of the phosphatidylcholine-preferring phospholipase C of Bacillus cereus (PLCBc) might play in binding and catalysis, selected mutants were prepared through site-directed mutagenesis of the plc gene. The mutants were then expressed in Escherichia coli and purified as fusion proteins with the maltose binding protein (MBP). Kinetic analysis showed that mutations at Glu4 had only modest effects on the catalytic activity, whereas those at Asp55 led to proteins whose values for kcat/KM were 10(4)-10(6) times less than that of the wild-type enzyme. The modest decrease in catalytic activity and the pH-dependent profile of the E4L mutant strongly suggest that glutamic acid at position 4 is not the general base in the PLCBc-catalyzed reaction. Rather, the results support the hypothesis that Glu4 is primarily involved in substrate binding, perhaps by electrostatic stabilization of the positive charge of the choline moiety of the phosphatidylcholine substrate. Examination of X-ray crystallographic data of PLCBc and its various complexes reveals that the carboxylate side chain of Asp55 is positioned such that it could activate a water for nucleophilic attack on the substrate or serve as a ligand for Zn1. However, the involvement of the side chain of Asp55 as an important Zn1 ligand is not consistent with the atomic absorption and thermostability data obtained for the D55L mutant, which are virtually identical with that of the wild-type enzyme. The large reduction in the measured kcat/KM of the D55E, D55N, and D55L mutants of PLCBc indicates that Asp55 plays a critical role in catalysis and likely serves as the general base in the hydrolysis of phosphatidylcholine by PLCBc.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D001409 Bacillus cereus A species of rod-shaped bacteria that is a common soil saprophyte. Its spores are widespread and multiplication has been observed chiefly in foods. Contamination may lead to food poisoning.
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015032 Zinc A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.

Related Publications

S F Martin, and P J Hergenrother
October 1986, Biochemical and biophysical research communications,
S F Martin, and P J Hergenrother
January 1974, Methods in enzymology,
S F Martin, and P J Hergenrother
December 1985, Biochimica et biophysica acta,
S F Martin, and P J Hergenrother
June 1980, FEBS letters,
S F Martin, and P J Hergenrother
April 1975, FEBS letters,
Copied contents to your clipboard!