Delineation of the regions of interleukin-2 (IL-2) receptor beta chain important for association of Jak1 and Jak3. Jak1-independent functional recruitment of Jak3 to Il-2Rbeta. 1998

M H Zhu, and J A Berry, and S M Russell, and W J Leonard
Laboratory of Molecular Immunology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.

Interleukin-2 (IL-2) induces heterodimerization of the IL-2 receptor beta (IL-2Rbeta) and gammac chains of its receptor and activates the Janus family tyrosine kinases, Jak1 and Jak3. Whereas Jak1 associates with IL-2Rbeta, Jak3 associates primarily with gammac but also with IL-2Rbeta. We analyzed four IL-2Rbeta mutations that diminish IL-2-induced proliferation and found that each also decreased IL-2-induced signal transducer and activator of transcription (STAT) activation. For this reason, and because the mutations were in the IL-2Rbeta membrane-proximal region, we investigated and found that each mutation diminished IL-2Rbeta association with both Jak1 and Jak3. This suggested that these Jaks might interact with the same region of IL-2Rbeta; however, certain IL-2Rbeta internal deletions and C-terminal truncations differentially affected the association of Jak1 and Jak3. Interestingly, just as Jak1-IL-2Rbeta association is Jak3-independent and functionally important, we show that Jak3-IL-2Rbeta association is Jak1-independent and implicate this association as being important for IL-2-induced Stat5 activation. Moreover, Jak1 and Jak3 could associate only in the presence of IL-2Rbeta, suggesting that these kinases can simultaneously bind to IL-2Rbeta. Thus, our data not only demonstrate that somewhat more distal as well as membrane-proximal cytoplasmic regions of a type I cytokine receptor are important for Jak kinase association but also suggest that two IL-2Rbeta-Jak kinase interactions are important for IL-2 signaling.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008894 Milk Proteins The major protein constituents of milk are CASEINS and whey proteins such as LACTALBUMIN and LACTOGLOBULINS. IMMUNOGLOBULINS occur in high concentrations in COLOSTRUM and in relatively lower concentrations in milk. (Singleton and Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed, p554) Milk Protein,Protein, Milk,Proteins, Milk
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015375 Receptors, Interleukin-2 Receptors present on activated T-LYMPHOCYTES and B-LYMPHOCYTES that are specific for INTERLEUKIN-2 and play an important role in LYMPHOCYTE ACTIVATION. They are heterotrimeric proteins consisting of the INTERLEUKIN-2 RECEPTOR ALPHA SUBUNIT, the INTERLEUKIN-2 RECEPTOR BETA SUBUNIT, and the INTERLEUKIN RECEPTOR COMMON GAMMA-CHAIN. IL-2 Receptors,Interleukin-2 Receptor,Interleukin-2 Receptors,Receptors, IL-2,Receptors, T-Cell Growth Factor,T-Cell Growth Factor Receptors,IL-2 Receptor,IL2 Receptor,IL2 Receptors,Interleukin 2 Receptor,Receptor, TCGF,T-Cell Growth Factor Receptor,TCGF Receptor,TCGF Receptors,IL 2 Receptor,IL 2 Receptors,Interleukin 2 Receptors,Receptor, IL-2,Receptor, IL2,Receptor, Interleukin 2,Receptor, Interleukin-2,Receptors, IL 2,Receptors, IL2,Receptors, Interleukin 2,Receptors, T Cell Growth Factor,Receptors, TCGF,T Cell Growth Factor Receptor,T Cell Growth Factor Receptors
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

M H Zhu, and J A Berry, and S M Russell, and W J Leonard
November 1994, Science (New York, N.Y.),
M H Zhu, and J A Berry, and S M Russell, and W J Leonard
November 1998, Molecular and cellular biology,
M H Zhu, and J A Berry, and S M Russell, and W J Leonard
November 1998, The Journal of experimental medicine,
M H Zhu, and J A Berry, and S M Russell, and W J Leonard
October 1995, American journal of medical genetics,
M H Zhu, and J A Berry, and S M Russell, and W J Leonard
April 2023, International journal of molecular sciences,
M H Zhu, and J A Berry, and S M Russell, and W J Leonard
May 1997, American journal of medical genetics,
M H Zhu, and J A Berry, and S M Russell, and W J Leonard
April 1997, Oncogene,
Copied contents to your clipboard!