Molecular analysis of P16(Ink4)/CDKN2 and P15(INK4B)/MTS2 genes in primary human testicular germ cell tumors. 1998

A Heidenreich, and J P Gaddipati, and J W Moul, and S Srivastava
Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.

OBJECTIVE p16 (MTS 1) and p15 (MTS 2) are negative regulators of cell cycle progression at the G1 cell cycle checkpoint and function as tumor suppressor genes (TSG). Both p15 and p16 are located on chromosome 9p21 and alterations have been demonstrated in a variety of human malignancies and human cancer cell lines. In testicular germ cell tumors (TGCT) loss of heterozygosity of 9p21 to 23 has been observed in 41% to 72% of informative cases. The aim of our study was to examine TGCT and testicular cancer cell lines for deletions and mutations of the p15 and p16 genes. METHODS 24 testicular germ cell tumors, 4 testicular cancer cell lines (TERA I, TERA II, HTE, HTH), 8 benign testicular tumors and 9 samples of normal testicular parenchyma were examined. Examinations for loss of heterozygosity (LOH) on 9p21 were performed for IFNA, D9S171, D9S126, D9S161, D9S1748 and PKY9 locus using Southern Blot analysis. Southern Blot analysis of the p16 gene to examine gross alterations was done using random primer labeled p16 cDNA. In addition all samples were examined for mutations of exons 1 to 3 of p16 and exons 1 to 2 of p15 by polymerase chain reaction (PCR) followed by single strand conformation polymorphism (SSCP) analysis on MDE-gels. All observed band shifts on SSCP were further evaluated by direct DNA sequencing techniques. RESULTS No major deletions were detected for p16 and p15. 42% of all TGCT demonstrated LOH of the IFNA locus, 16% of the D9S161 locus and 5.5% of the D9S171 locus. No LOH was seen for the D9S126 locus. 5/24 TGCT (21%) and 1 testicular cancer cell line (TERA II) demonstrated band shifts for exon 2, 8/24 TGCT (33%) and 1 testicular cancer cell line (TERA I) showed band shifts for exon 3; 4 TGCT had an allelic loss for exon 3 on SSCP. DNA sequencing analysis for exon 2 demonstrated a single base substitution (G-->A) in codon 140 resulting in an amino acid exchange (ala-->thre) in 4 cases and a single base deletion with frame shift mutation in codon 142 in 2 cases. DNA sequencing analysis for exon 3 demonstrated a polymorphism in intron 2 in all cases. For p15 no band shifts were observed for exons 1 to 2 in TGCT or testicular cancer cell lines; none of benign testicular tumors or normal control tissues demonstrated any band shifts for p15 or p16. CONCLUSIONS We demonstrated a high frequency of mutations for exon 2 in specimens of primary testicular germ cell tumors, but not in benign tumors or normal controls. We therefore believe that p16 might be involved in the pathogenesis of human TGCT. The polymorphisms described for exon 3 might be utilized for further LOH studies. The absence of mutations in p15 gene in TGCT specimens suggests that p15 might not play an important role in the pathogenesis of testicular germ cell tumors.

UI MeSH Term Description Entries
D008297 Male Males
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002899 Chromosomes, Human, Pair 9 A specific pair of GROUP C CHROMSOMES of the human chromosome classification. Chromosome 9
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013736 Testicular Neoplasms Tumors or cancer of the TESTIS. Germ cell tumors (GERMINOMA) of the testis constitute 95% of all testicular neoplasms. Cancer of Testis,Cancer of the Testes,Testicular Cancer,Testicular Neoplasm,Testicular Tumor,Testis Cancer,Cancer of the Testis,Neoplasms, Testicular,Neoplasms, Testis,Testicular Tumors,Testis Neoplasms,Tumor of Rete Testis,Cancer, Testicular,Cancer, Testis,Cancers, Testicular,Cancers, Testis,Neoplasm, Testicular,Neoplasm, Testis,Rete Testis Tumor,Rete Testis Tumors,Testicular Cancers,Testis Cancers,Testis Neoplasm,Testis Tumor, Rete,Testis Tumors, Rete,Tumor, Testicular,Tumors, Testicular
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot

Related Publications

A Heidenreich, and J P Gaddipati, and J W Moul, and S Srivastava
December 1996, International journal of cancer,
A Heidenreich, and J P Gaddipati, and J W Moul, and S Srivastava
March 1996, International journal of cancer,
A Heidenreich, and J P Gaddipati, and J W Moul, and S Srivastava
May 1995, Blood,
A Heidenreich, and J P Gaddipati, and J W Moul, and S Srivastava
September 1999, Blood,
A Heidenreich, and J P Gaddipati, and J W Moul, and S Srivastava
January 1996, International journal of oncology,
A Heidenreich, and J P Gaddipati, and J W Moul, and S Srivastava
July 1996, Cancer,
A Heidenreich, and J P Gaddipati, and J W Moul, and S Srivastava
June 2002, The Journal of investigative dermatology,
A Heidenreich, and J P Gaddipati, and J W Moul, and S Srivastava
January 2017, Pathology oncology research : POR,
A Heidenreich, and J P Gaddipati, and J W Moul, and S Srivastava
October 2010, Leukemia & lymphoma,
A Heidenreich, and J P Gaddipati, and J W Moul, and S Srivastava
December 1995, Molecular carcinogenesis,
Copied contents to your clipboard!