Amphotericin B in lipid emulsion: stability, compatibility, and in vitro antifungal activity. 1998

S Walker, and S A Tailor, and M Lee, and L Louie, and M Louie, and A E Simor
Department of Pharmacy, Sunnybrook Health Science Centre, University of Toronto, Ontario, Canada.

Newer formulations of amphotericin B (AmB) complexed with liposomes or lipid suspensions have been developed. Preliminary studies have suggested that AmB in Intralipid (IL) may be as effective as, but less toxic than, conventional formulations of AmB, but few data are available regarding its stability, compatibility, or in vitro antifungal activity. A compatibility study was done to evaluate the effects of AmB concentrations in IL containing either 10 or 20% soybean oil. The effects of temperature, shaking, and AmB and IL concentrations on the stability of AmB-IL suspensions were analyzed by visual inspection and liquid chromatography. The in vitro antifungal activity of AmB-IL, compared to that of AmB alone against reference strains of Candida species was determined by using a broth macrodilution method in accordance with National Committee for Clinical Laboratory Standards guidelines (M27-T). Samples of AmB-IL which were lightly shaken retained more than 90% of the AmB concentration over 21 days when stored at either 4 or 23 degrees C. Varying the AmB concentration did not appear to affect the stability of AmB-IL. However, a precipitate was formed when mixtures with more than 30% lipid as a proportion of the total volume were centrifuged. AmB-IL and AmB alone had similar in vitro antifungal activities against reference strains of yeasts. Further pharmacologic and clinical studies with AmB-IL are warranted, although AmB should not be combined with IL in concentrations capable of producing a precipitate.

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D002175 Candida A genus of yeast-like mitosporic Saccharomycetales fungi characterized by producing yeast cells, mycelia, pseudomycelia, and blastophores. It is commonly part of the normal flora of the skin, mouth, intestinal tract, and vagina, but can cause a variety of infections, including CANDIDIASIS; ONYCHOMYCOSIS; VULVOVAGINAL CANDIDIASIS; and CANDIDIASIS, ORAL (THRUSH). Candida guilliermondii var. nitratophila,Candida utilis,Cyberlindnera jadinii,Hansenula jadinii,Lindnera jadinii,Monilia,Pichia jadinii,Saccharomyces jadinii,Torula utilis,Torulopsis utilis,Monilias
D004344 Drug Incompatibility The quality of not being miscible with another given substance without a chemical change. One drug is not of suitable composition to be combined or mixed with another agent or substance. The incompatibility usually results in an undesirable reaction, including chemical alteration or destruction. (Dorland, 27th ed; Stedman, 25th ed) Drug Incompatibilities,Incompatibilities, Drug,Incompatibility, Drug
D004355 Drug Stability The chemical and physical integrity of a pharmaceutical product. Drug Shelf Life,Drugs Shelf Lives,Shelf Life, Drugs,Drug Stabilities,Drugs Shelf Life,Drugs Shelf Live,Life, Drugs Shelf,Shelf Life, Drug,Shelf Live, Drugs,Shelf Lives, Drugs
D004655 Emulsions Colloids formed by the combination of two immiscible liquids such as oil and water. Lipid-in-water emulsions are usually liquid, like milk or lotion. Water-in-lipid emulsions tend to be creams. The formation of emulsions may be aided by amphiphatic molecules that surround one component of the system to form MICELLES. Emulsion
D005217 Fat Emulsions, Intravenous Emulsions of fats or lipids used primarily in parenteral feeding. Intravenous Fat Emulsion,Intravenous Lipid Emulsion,Lipid Emulsions, Intravenous,Emulsion, Intravenous Fat,Emulsion, Intravenous Lipid,Emulsions, Intravenous Fat,Emulsions, Intravenous Lipid,Fat Emulsion, Intravenous,Intravenous Fat Emulsions,Intravenous Lipid Emulsions,Lipid Emulsion, Intravenous
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000666 Amphotericin B Macrolide antifungal antibiotic produced by Streptomyces nodosus obtained from soil of the Orinoco river region of Venezuela. Amphocil,Amphotericin,Amphotericin B Cholesterol Dispersion,Amphotericin B Colloidal Dispersion,Fungizone
D000935 Antifungal Agents Substances that destroy fungi by suppressing their ability to grow or reproduce. They differ from FUNGICIDES, INDUSTRIAL because they defend against fungi present in human or animal tissues. Anti-Fungal Agents,Antifungal Agent,Fungicides, Therapeutic,Antibiotics, Antifungal,Therapeutic Fungicides,Agent, Antifungal,Anti Fungal Agents,Antifungal Antibiotics

Related Publications

S Walker, and S A Tailor, and M Lee, and L Louie, and M Louie, and A E Simor
January 2000, Chemotherapy,
S Walker, and S A Tailor, and M Lee, and L Louie, and M Louie, and A E Simor
January 1975, Antimicrobial agents and chemotherapy,
S Walker, and S A Tailor, and M Lee, and L Louie, and M Louie, and A E Simor
October 1994, Mycopathologia,
S Walker, and S A Tailor, and M Lee, and L Louie, and M Louie, and A E Simor
April 1998, Antimicrobial agents and chemotherapy,
S Walker, and S A Tailor, and M Lee, and L Louie, and M Louie, and A E Simor
January 1996, Journal of intravenous nursing : the official publication of the Intravenous Nurses Society,
S Walker, and S A Tailor, and M Lee, and L Louie, and M Louie, and A E Simor
May 1997, Critical care medicine,
S Walker, and S A Tailor, and M Lee, and L Louie, and M Louie, and A E Simor
May 1997, Critical care medicine,
S Walker, and S A Tailor, and M Lee, and L Louie, and M Louie, and A E Simor
April 1996, The Annals of pharmacotherapy,
S Walker, and S A Tailor, and M Lee, and L Louie, and M Louie, and A E Simor
June 1968, Sabouraudia,
Copied contents to your clipboard!