Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. 1998

E Arman, and R Haffner-Krausz, and Y Chen, and J K Heath, and P Lonai
Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel 76100, USA.

We disrupted the fibroblast growth factor (FGF) receptor 2 (FGFR2) gene by introducing a neo cassette into the IIIc ligand binding exon and by deleting a genomic DNA fragment encoding its transmembrane domain and part of its kinase I domain. A recessive embryonic lethal mutation was obtained. Preimplantation development was normal until the blastocyst stage. Homozygous mutant embryos died a few hours after implantation at a random position in the uterine crypt, with collapsed yolk cavity. Mutant blastocysts hatched, adhered, and formed a layer of trophoblast giant cells in vitro, but after prolonged culture, the growth of the inner cell mass stopped, no visceral endoderm formed, and finally the egg cylinder disintegrated. It follows that FGFR2 is required for early postimplantation development between implantation and the formation of the egg cylinder. We suggest that FGFR2 contributes to the outgrowth, differentiation, and maintenance of the inner cell mass and raise the possibility that this activity is mediated by FGF4 signals transmitted by FGFR2. The role of early FGF signaling in pregastrulation development as a possible adaptation to mammalian (amniote) embryogenesis is discussed.

UI MeSH Term Description Entries
D010064 Embryo Implantation Endometrial implantation of EMBRYO, MAMMALIAN at the BLASTOCYST stage. Blastocyst Implantation,Decidual Cell Reaction,Implantation, Blastocyst,Nidation,Ovum Implantation,Blastocyst Implantations,Decidual Cell Reactions,Embryo Implantations,Implantation, Embryo,Implantation, Ovum,Implantations, Blastocyst,Implantations, Embryo,Implantations, Ovum,Nidations,Ovum Implantations
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005260 Female Females
D005804 Genes, Lethal Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability. Alleles, Lethal,Allele, Lethal,Gene, Lethal,Lethal Allele,Lethal Alleles,Lethal Gene,Lethal Genes
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D017468 Receptors, Fibroblast Growth Factor Specific molecular sites or structures on cell membranes that react with FIBROBLAST GROWTH FACTORS (both the basic and acidic forms), their analogs, or their antagonists to elicit or to inhibit the specific response of the cell to these factors. These receptors frequently possess tyrosine kinase activity. FGF Receptor Complex,FGF Receptor Complexes,FGF Receptors,Fibroblast Growth Factor Receptors,Receptors, FGF,FGF Receptor,Fibroblast Growth Factor Receptor,Heparin-Binding Growth Factor Receptor,Heparin Binding Growth Factor Receptor,Receptor, FGF

Related Publications

E Arman, and R Haffner-Krausz, and Y Chen, and J K Heath, and P Lonai
October 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
E Arman, and R Haffner-Krausz, and Y Chen, and J K Heath, and P Lonai
August 2009, Developmental dynamics : an official publication of the American Association of Anatomists,
E Arman, and R Haffner-Krausz, and Y Chen, and J K Heath, and P Lonai
March 2007, Pediatric nephrology (Berlin, Germany),
E Arman, and R Haffner-Krausz, and Y Chen, and J K Heath, and P Lonai
August 2011, American journal of physiology. Renal physiology,
E Arman, and R Haffner-Krausz, and Y Chen, and J K Heath, and P Lonai
September 2011, Pediatric nephrology (Berlin, Germany),
E Arman, and R Haffner-Krausz, and Y Chen, and J K Heath, and P Lonai
December 2014, Genes & diseases,
E Arman, and R Haffner-Krausz, and Y Chen, and J K Heath, and P Lonai
January 2014, Odontology,
E Arman, and R Haffner-Krausz, and Y Chen, and J K Heath, and P Lonai
January 1995, Progress in growth factor research,
E Arman, and R Haffner-Krausz, and Y Chen, and J K Heath, and P Lonai
January 2004, Developmental biology,
E Arman, and R Haffner-Krausz, and Y Chen, and J K Heath, and P Lonai
February 2006, Molecular biology of the cell,
Copied contents to your clipboard!