Differential response of mouse male germ-cell stages to radiation-induced specific-locus and dominant mutations. 1998

W L Russell, and J W Bangham, and L B Russell
Biology Division, Oak Ridge National Laboratory, Tennessee 37831-8077, USA. russelllb@bioax1.bio.ornl.gov

In an attempt to provide a systematic assessment of the frequency and nature of mutations induced in successive stages of spermato- and spermiogenesis, X-irradiated male mice were re-mated at weekly intervals, and large samples of progeny, observed from birth onward, were scored and genetically tested for recessive mutations at seven specific loci and for externally recognizable dominant mutations. Productivity findings provided a rough measure of induced dominant-lethal frequencies. A qualitative assessment of specific-locus mutations (which include deletions and other rearrangements) was made on the basis of homozygosity test results, as well as from information derived from more recent complementation studies and molecular analyses. Both recessive and dominant visibles revealed clear distinctions between spermatogonia and postspermatogonial stages. In addition, differences for both of these endpoints, as well as for presumed dominant lethals, were found among various postspermatogonial stages. It may be concluded that radiation produces its maximum rates of genetic damage in germ-cell stages ranging from midpachytene spermatocytes through early spermatids, a pattern unlike any of those that have been defined for chemicals; further, the frequency peaks for radiation are lower and broader. The difference between post-stem-cell stages overall and stem-cell spermatogonia was smaller than is generally found with chemicals, not only with respect to the frequency but also the nature of mutations.

UI MeSH Term Description Entries
D008297 Male Males
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D005260 Female Females
D005799 Genes, Dominant Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state. Conditions, Dominant Genetic,Dominant Genetic Conditions,Genetic Conditions, Dominant,Condition, Dominant Genetic,Dominant Gene,Dominant Genes,Dominant Genetic Condition,Gene, Dominant,Genetic Condition, Dominant
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018095 Germ-Line Mutation Any detectable and heritable alteration in the lineage of germ cells. Mutations in these cells (i.e., "generative" cells ancestral to the gametes) are transmitted to progeny while those in somatic cells are not. Mutation, Germ-Line,Germline Mutation,Germ Line Mutation,Germ-Line Mutations,Germline Mutations,Mutation, Germ Line,Mutation, Germline,Mutations, Germ-Line,Mutations, Germline

Related Publications

W L Russell, and J W Bangham, and L B Russell
September 1968, Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie,
W L Russell, and J W Bangham, and L B Russell
February 1982, Mutation research,
W L Russell, and J W Bangham, and L B Russell
January 1976, Nature,
W L Russell, and J W Bangham, and L B Russell
February 1991, Mutation research,
W L Russell, and J W Bangham, and L B Russell
October 1979, Mutation research,
W L Russell, and J W Bangham, and L B Russell
January 1982, Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie,
W L Russell, and J W Bangham, and L B Russell
February 1979, Mutation research,
Copied contents to your clipboard!