Epidermal Langerhans cell development and differentiation. 1998

H Strobl, and E Riedl, and C Bello-Fernandez, and W Knapp
Institute of Immunology, University of Vienna, Austria.

Epidermal Langerhans cells (LC) play a critical role in host defense. Still we know rather little about the development and functional specialization of these bone marrow-derived dendritic cells (DC) located in the most peripheral ectodermal tissue of the mammalian organism. How LC develop from their primitive progenitors in bone marrow and to what extent LC are related in their development to other lineages of the hemopoietic system is still under debate. There are currently 3 major areas of debate: 1) which are the signals required for LC development and differentiation to occur, 2) what are the (molecular) characteristics of the intermediate stages of LC differentiation, and 3) how are LC related in their development and/or function to other cells of the hemopoietic system? A better understanding of LC development and answers to these questions can be expected from recently developed technologies which allow the in vitro generation of DC with the typical molecular, morphological and functional features of LC from purified CD34+ progenitor cells under defined serum-free culture conditions. TGF-beta 1 was found to be an absolute requirement for in vitro LC development under serum-free conditions upon stimulation with the classical DC growth and differentiation factors GM-CSF, TNF-alpha and SCF. The recently identified cytokine FLT3 ligand further dramatically enhanced in vitro LC development and even allowed efficient in vitro generation of LC colonies from serum-free single cell cultures of CD34+ hemopoietic progenitor cells.

UI MeSH Term Description Entries
D007801 Langerhans Cells Recirculating, dendritic, antigen-presenting cells containing characteristic racket-shaped granules (Birbeck granules). They are found principally in the stratum spinosum of the EPIDERMIS and are rich in Class II MAJOR HISTOCOMPATIBILITY COMPLEX molecules. Langerhans cells were the first dendritic cell to be described and have been a model of study for other dendritic cells (DCs), especially other migrating DCs such as dermal DCs and INTERSTITIAL DENDRITIC CELLS. Langerhans Cell,Dendritic Cells, Dermal,Dendritic Cells, Epidermal,Dendritic Cells, Skin,Dermal Dendritic Cells,Epidermal Dendritic Cells,Skin Dendritic Cells,Cell, Dermal Dendritic,Cell, Epidermal Dendritic,Cell, Langerhans,Cell, Skin Dendritic,Cells, Dermal Dendritic,Cells, Epidermal Dendritic,Cells, Langerhans,Cells, Skin Dendritic,Dendritic Cell, Dermal,Dendritic Cell, Epidermal,Dendritic Cell, Skin,Dermal Dendritic Cell,Epidermal Dendritic Cell,Skin Dendritic Cell
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk

Related Publications

H Strobl, and E Riedl, and C Bello-Fernandez, and W Knapp
February 2019, Seminars in cell & developmental biology,
H Strobl, and E Riedl, and C Bello-Fernandez, and W Knapp
October 1968, The British journal of dermatology,
H Strobl, and E Riedl, and C Bello-Fernandez, and W Knapp
August 1986, The Journal of investigative dermatology,
H Strobl, and E Riedl, and C Bello-Fernandez, and W Knapp
September 2005, Immunity,
H Strobl, and E Riedl, and C Bello-Fernandez, and W Knapp
October 2014, Blood,
H Strobl, and E Riedl, and C Bello-Fernandez, and W Knapp
January 1995, Advances in experimental medicine and biology,
H Strobl, and E Riedl, and C Bello-Fernandez, and W Knapp
March 2001, Blood,
H Strobl, and E Riedl, and C Bello-Fernandez, and W Knapp
August 2012, The Journal of investigative dermatology,
H Strobl, and E Riedl, and C Bello-Fernandez, and W Knapp
November 1992, The Journal of investigative dermatology,
Copied contents to your clipboard!