Purification and characterization of a proteinase from pineapple fruit, fruit bromelain FA2. 1976

F Yamada, and N Takahashi, and T Murachi

Fruit bromelain FA2, the main proteinase component of the juice of pineapple fruit, has been purified and characterized. 1. Efficient extraction of this enzyme from the crude material was possible using "Cellulosin AP," a microbial polysaccharidase preparation containing cellulase, hemicellulase, and pectinase. The enzyme was purified mainly by successive applications of anion-exchange chromatography, yielding an apparently homogeneous protein as judged by several physical, chemical, and immunochemical criteria. Properties of FA2 include: molecular weight, 31,000; isoelectric point, pH 4.6; absorbance at 280 nm of a 1% solution at pH 7.0 per cm, 19.2. 2. FA2 gave only alanine phenylthiohydantoin upon amino-terminal group analysis by the Edman procedure. Stepwise degradation yielded the amino-terminal sequence Ala-Val-Pro-Gln-Ser-Ile-Asp-Trp-Arg-Asp-Tyr-Gly-Ala. The amino acid composition of FA2 was not markedly different from that of stem bromelain, except for a much smaller lysine content and a smaller alanine content relative to glycine in FA2. FA2 contained neither amino sugars nor neutral carbohydrates as determined by several methods, so FA2 is not a glycoprotein. 3. By labeling the reactive cysteine residue (CYS) with [14C]iodoacetate, the following partial amino acid sequence has been determined. Asn-Glx-Asn-Pro-Cys-Gly-Ala-CYS.

UI MeSH Term Description Entries
D007122 Immunoelectrophoresis A technique that combines protein electrophoresis and double immunodiffusion. In this procedure proteins are first separated by gel electrophoresis (usually agarose), then made visible by immunodiffusion of specific antibodies. A distinct elliptical precipitin arc results for each protein detectable by the antisera.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D001963 Bromelains Protein-digesting and milk-clotting enzymes found in PINEAPPLE fruit juice and stem tissue. Enzymes from the two sources are distinguished as fruit bromelain and stem bromelain. This enzyme was formerly listed as EC 3.4.22.4. Bromelins,Ananase,Bromelain,Bromelain-POS,Bromelin,Dayto Anase,Debrase,Dontisanin,Extranase,Mucozym,Proteozym,Traumanase,Bromelain POS,BromelainPOS
D005260 Female Females
D005944 Glucosamine 2-Amino-2-Deoxyglucose,Dona,Dona S,Glucosamine Sulfate,Hespercorbin,Xicil,2 Amino 2 Deoxyglucose,Sulfate, Glucosamine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine

Related Publications

F Yamada, and N Takahashi, and T Murachi
February 2021, Journal of food science,
F Yamada, and N Takahashi, and T Murachi
August 2011, Food science and technology international = Ciencia y tecnologia de los alimentos internacional,
F Yamada, and N Takahashi, and T Murachi
July 2008, Bioresource technology,
F Yamada, and N Takahashi, and T Murachi
December 2017, Journal of cellular biochemistry,
F Yamada, and N Takahashi, and T Murachi
January 2021, Saudi journal of biological sciences,
F Yamada, and N Takahashi, and T Murachi
January 2024, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
F Yamada, and N Takahashi, and T Murachi
December 1979, The Journal of biological chemistry,
Copied contents to your clipboard!