Effects of hypoxia and post-hypoxic recovery on chick retinal pigment epithelium potentials and light-evoked responses in vitro. 1998

S Nakazaki, and N Nao-i, and A Sawada
Department of Ophthalmology, Miyazaki Medical College, Japan. shujina@postl.miyazaki-med.ac.jp

OBJECTIVE To determine the cellular mechanisms involved in the hypoxia-induced alteration of the retinal pigment epithelium (RPE) potentials and the light-evoked responses of the RPE in chicks. In addition, to determine the mechanisms involved in the recovery of the RPE during the post-hypoxic period. METHODS In vitro preparations of chick retina-RPE-choroid were studied by potassium-selective microelectrodes placed in the subretinal space. In addition, single-barrel microelectrodes were used to obtain intracellular recordings from the RPE cells. The perfusate was bubbled continuously with 95% oxygen and 5% carbon dioxide for the control condition and replaced by 95% nitrogen and 5% carbon dioxide to induce hypoxia. RESULTS Hypoxia induced a significant reduction of the trans-tissue potential which was found to result from the depolarization of the apical membrane of the RPE. This depolarization was induced by an increase of subretinal [K+]o. The c-wave was also markedly decreased or abolished during hypoxia. There were two phases of post-hypoxic recovery: an initial small increase in the trans-tissue potential resulting from a basal membrane depolarization followed by an apical membrane hyperpolarization. The trans-tissue potential and the c-wave also were supernormal in two phases during this post-hypoxic period. The c-wave amplitude was temporarily elevated (263.7 +/- 77.4% of pre-hypoxic control) because of the enhanced trans-epithelial c-wave and without a light-evoked decrease in subretinal [K+]o. CONCLUSIONS The trans-tissue potential and the c-wave were markedly decreased during hypoxia. During the post-hypoxic period, both potential recovered with transient supernormalities in two phases. The results suggested that the hypoxic changes resulted directly from changes of the RPE membranes and indirectly from a change in the subretinal [K+]o but were not mediated by the light-evoked decrease in subretinal [K+]o.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010857 Pigment Epithelium of Eye The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye. Eye Pigment Epithelium
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015687 Cell Hypoxia A condition of decreased oxygen content at the cellular level. Anoxia, Cellular,Cell Anoxia,Hypoxia, Cellular,Anoxia, Cell,Anoxias, Cell,Anoxias, Cellular,Cell Anoxias,Cell Hypoxias,Cellular Anoxia,Cellular Anoxias,Cellular Hypoxia,Cellular Hypoxias,Hypoxia, Cell,Hypoxias, Cell,Hypoxias, Cellular
D017097 Electric Impedance The resistance to the flow of either alternating or direct electrical current. Bioelectrical Impedance,Electric Resistance,Impedance,Ohmic Resistance,Biolectric Impedance,Electrical Impedance,Electrical Resistance,Impedance, Bioelectrical,Impedance, Biolectric,Impedance, Electric,Impedance, Electrical,Ohmic Resistances,Resistance, Electric,Resistance, Electrical,Resistance, Ohmic,Resistances, Ohmic
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

S Nakazaki, and N Nao-i, and A Sawada
October 1989, Experimental eye research,
S Nakazaki, and N Nao-i, and A Sawada
January 1990, Investigative ophthalmology & visual science,
S Nakazaki, and N Nao-i, and A Sawada
January 1990, Investigative ophthalmology & visual science,
S Nakazaki, and N Nao-i, and A Sawada
March 2004, Journal of neurophysiology,
S Nakazaki, and N Nao-i, and A Sawada
January 1983, Vision research,
S Nakazaki, and N Nao-i, and A Sawada
June 1991, Investigative ophthalmology & visual science,
S Nakazaki, and N Nao-i, and A Sawada
June 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Nakazaki, and N Nao-i, and A Sawada
January 1984, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
Copied contents to your clipboard!