Characterization of focal liver lesions with half-fourier acquisition single-shot turbo-spin-echo (HASTE) and inversion recovery (IR)-HASTE sequences. 1998

Y Tang, and Y Yamashita, and T Namimoto, and M Takahashi
Department of Radiology, Kumamoto University School of Medicine, Honjo, Japan. yama@kaiju.medic.kumamoto-u.ac.jp

The half-Fourier acquisition single-shot turbo-spin-echo (HASTE) sequence allows for heavily T2-weighted images, and the inversion recovery (IR)-HASTE sequence represents the T1 value of the tissue in a very short time. This study was undertaken to determine whether characterizing focal liver lesions can be made by combination with these very fast sequences. Seventy-four patients (33 cysts, 28 hemangiomas, and 33 malignant solid liver masses [15 metastatic tumors, 14 hepatocellular carcinomas, and 4 cholangiocarcinomas) underwent dynamic CT and breath-hold abdominal MRI using turbo-spin-echo (TSE), HASTE, and IR-HASTE sequences with variable T1 values on a 1.5-T MR unit. The imaging time for each slice was 2 seconds for HASTE imaging and 2 to 4 seconds for IR-HASTE imaging. Lesion detection and qualitative characterization were evaluated. Quantitative analysis was performed by measuring the contrast-to-noise ratios (CNRs) as well as visual analysis. The inversion time (TI) nulling values were also statistically analyzed. All cystic lesions were detected on both TSE and HASTE imagings. For solid lesions, TSE failed to detect one small solid lesion and HASTE sequence failed to detect three lesions. With HASTE sequences, all cysts and hemangiomas were markedly hyperintense in comparison with malignant solid masses. CNRs of hemangiomas or cysts were significantly higher than those of malignant solid masses (P < .01), and there was no overlap. The TI nulling value was 1,100+/-100 msec for hemangiomas, 1,900+/-110 msec for cysts, and 740+/-140 msec for malignant solid masses. There was no overlap between the TI nulling values of hemangiomas and cysts (P < .01). By combining the CNR from the HASTE sequence and the TI nulling value from the IR-HASTE sequence, complete discrimination among malignant solid masses, hemangiomas, and cysts of the liver could be made. Application of HASTE (representing T2 values) and IR-HASTE (representing T1 values) sequences provided a rapid and reliable imaging method for characterizing focal liver lesions without the use of contrast medium.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D003937 Diagnosis, Differential Determination of which one of two or more diseases or conditions a patient is suffering from by systematically comparing and contrasting results of diagnostic measures. Diagnoses, Differential,Differential Diagnoses,Differential Diagnosis
D005260 Female Females
D005583 Fourier Analysis Analysis based on the mathematical function first formulated by Jean-Baptiste-Joseph Fourier in 1807. The function, known as the Fourier transform, describes the sinusoidal pattern of any fluctuating pattern in the physical world in terms of its amplitude and its phase. It has broad applications in biomedicine, e.g., analysis of the x-ray crystallography data pivotal in identifying the double helical nature of DNA and in analysis of other molecules, including viruses, and the modified back-projection algorithm universally used in computerized tomography imaging, etc. (From Segen, The Dictionary of Modern Medicine, 1992) Fourier Series,Fourier Transform,Analysis, Cyclic,Analysis, Fourier,Cyclic Analysis,Analyses, Cyclic,Cyclic Analyses,Series, Fourier,Transform, Fourier

Related Publications

Y Tang, and Y Yamashita, and T Namimoto, and M Takahashi
June 1996, AJR. American journal of roentgenology,
Y Tang, and Y Yamashita, and T Namimoto, and M Takahashi
May 1998, AJNR. American journal of neuroradiology,
Y Tang, and Y Yamashita, and T Namimoto, and M Takahashi
July 2007, AJR. American journal of roentgenology,
Y Tang, and Y Yamashita, and T Namimoto, and M Takahashi
March 1997, AJNR. American journal of neuroradiology,
Y Tang, and Y Yamashita, and T Namimoto, and M Takahashi
October 1997, AJNR. American journal of neuroradiology,
Y Tang, and Y Yamashita, and T Namimoto, and M Takahashi
May 1999, Annals of the Academy of Medicine, Singapore,
Y Tang, and Y Yamashita, and T Namimoto, and M Takahashi
January 2018, European journal of radiology,
Copied contents to your clipboard!