Separation of nucleic acid hydrolysis products, purines, pyrimidines, nucleosides, nucleotides, ribonucleic acid hydrolyzates, and mixtures from nucleotide syntheses by column chromatography on amberlite XAD-4. 1976

K Emematsu, and R J Suhadolnik

Amberlite XAD-4 resin has been studied as a support for liquid-solid column chromatography. By coating the resin with triethylammonium bicarbonate, a new and unique separation of nucleic acid components has been achieved. Separations are accomplished with a linear gradient of this buffer from 0.1 to 0.4 M. Separation occurs in the following order: inorganic phosphate, purine or pyrimidine bases, 5'-monophosphates, nucleosides and 5'-diphosphates or 5'-triphosphates; the 2'(3')-monophosphates are eluted after either the 5'mono-, di-or triphosphates. The bases and nucleosides are separated in the order: cytosine, uracil, guanine and adenine. Inorganic phosphate and the nucleotides are eluted in the order: inorganic phosphate 5'-mono, di- and tri-phosphates. Excellent separation of the 5'-monophosphates and the 2'(3')-monophosphates is now possible. In each series of 5'-mono-, di- and tri-phosphates or 2'(3')-monophosphates, the elution order is generally cytidine, uridine, guanosine and adenosine. By use of water instead of coating the resin with triethylammonium bicarbonate, the nucleotides and inorganic phosphate are found in the void volume; adenine is eluted very slowly, whereas adenosine is not eluted. Adenosine is eluted only with ethanol-water (1:3). The method is advantageous in that the recovery is quantitative, the buffer is easily removed, the capacity of the column is large (35 mugmoles pergram of resin), flow-rates are high, the time required is short and separations of combinations of inorganic phosphate, bases, nucleosides and nucleotides are now possible that previously could not be accomplished.

UI MeSH Term Description Entries
D009696 Nucleic Acids High molecular weight polymers containing a mixture of purine and pyrimidine nucleotides chained together by ribose or deoxyribose linkages. Nucleic Acid,Acid, Nucleic,Acids, Nucleic
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D011684 Purine Nucleosides Purines with a RIBOSE attached that can be phosphorylated to PURINE NUCLEOTIDES. Purine Nucleoside,Nucleoside, Purine,Nucleosides, Purine
D011685 Purine Nucleotides Purines attached to a RIBOSE and a phosphate that can polymerize to form DNA and RNA. Nucleotides, Purine
D011741 Pyrimidine Nucleosides Pyrimidines with a RIBOSE attached that can be phosphorylated to PYRIMIDINE NUCLEOTIDES. Nucleosides, Pyrimidine
D011742 Pyrimidine Nucleotides Pyrimidines with a RIBOSE and phosphate attached that can polymerize to form DNA and RNA. Nucleotides, Pyrimidine
D012117 Resins, Synthetic Polymers of high molecular weight which at some stage are capable of being molded and then harden to form useful components. Dental Resins,Dental Resin,Resin, Dental,Resin, Synthetic,Resins, Dental,Synthetic Resin,Synthetic Resins
D002021 Buffers A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer. Buffer
D002853 Chromatography, Liquid Chromatographic techniques in which the mobile phase is a liquid. Liquid Chromatography

Related Publications

K Emematsu, and R J Suhadolnik
August 1948, The Journal of biological chemistry,
K Emematsu, and R J Suhadolnik
January 1978, Archives of toxicology,
K Emematsu, and R J Suhadolnik
October 1969, Journal of chromatography,
K Emematsu, and R J Suhadolnik
January 1950, Biochimica et biophysica acta,
K Emematsu, and R J Suhadolnik
January 1962, Biochimica et biophysica acta,
Copied contents to your clipboard!