Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. 1976

J L Weiss, and J W Frederiksen, and M L Weisfeldt

The hemodynamic determinants of the time-course of fall in isovolumic left ventricular pressure were assessed in isolated canine left ventricular preparations. Pressure fall was studied in isovolumic beats or during prolonged isovolumic diastole after ejection. Pressure fall was studied in isovolumic relaxation for isovolumic and ejecting beats (r less than or equal to 0.98) and was therefore characterized by a time constant, T. Higher heart rates shortened T slightly from 52.6 +/- 4.5 ms at 110/min to 48.2 +/- 6.0 ms at 160/min (P less than 0.01, n = 8). Higher ventricular volumes under isovolumic conditions resulted in higher peak left ventricular pressure but no significant change in T. T did shorten from 67.1 +/- 5.0 ms in isovolumic beats to 45.8 +/- 2.9 ms in the ejecting beats (P less than 0.001, n = 14). In the ejecting beats, peak systolic pressure was lower, and end-systolic volume smaller. To differentiate the effects of systolic shortening during ejection from those of lower systolic pressure and smaller end-systolic volume, beats with large end-diastolic volumes were compared to beats with smaller end-diastolic volumes. The beats with smaller end-diastolic volumes exhibited less shortening but similar end-systolic volumes and peak systolic pressure. T again shortened to a greater extent in the beats with greater systolic shortening. Calcium chloride and acetylstrophanthidin resulted in no significant change in T, but norepinephrine, which accelerates active relaxation, resulted in a significant shortening of T (65.6 +/- 13.4 vs. 46.3 +/- 7.0 ms, P less than 0.02). During recovery from ischemia, T increased significantly from 59.3 +/- 9.6 to 76.8 +/- 13.1 ms when compared with the preischemic control beat (P less than 0.05). Thus, the present studies show that the time-course of isovolumic pressure fall subsequent to maximum negative dP/dt is exponential, independent of systolic stress and end-systolic fiber length, and minimally dependent on heart rate. T may be an index of the activity of the active cardiac relaxing system and appears dependent on systolic fiber shortening.

UI MeSH Term Description Entries
D007511 Ischemia A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION. Ischemias
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D002306 Cardiac Volume The volume of the HEART, usually relating to the volume of BLOOD contained within it at various periods of the cardiac cycle. The amount of blood ejected from a ventricle at each beat is STROKE VOLUME. Heart Volume,Cardiac Volumes,Heart Volumes,Volume, Cardiac,Volume, Heart,Volumes, Cardiac,Volumes, Heart
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse

Related Publications

J L Weiss, and J W Frederiksen, and M L Weisfeldt
September 1986, Cardiovascular research,
J L Weiss, and J W Frederiksen, and M L Weisfeldt
July 1963, The American journal of physiology,
J L Weiss, and J W Frederiksen, and M L Weisfeldt
October 2000, Revista portuguesa de cardiologia : orgao oficial da Sociedade Portuguesa de Cardiologia = Portuguese journal of cardiology : an official journal of the Portuguese Society of Cardiology,
J L Weiss, and J W Frederiksen, and M L Weisfeldt
December 1990, European heart journal,
J L Weiss, and J W Frederiksen, and M L Weisfeldt
October 1992, International journal of cardiology,
J L Weiss, and J W Frederiksen, and M L Weisfeldt
February 1980, Circulation research,
J L Weiss, and J W Frederiksen, and M L Weisfeldt
July 1980, The American journal of physiology,
J L Weiss, and J W Frederiksen, and M L Weisfeldt
January 1982, The American journal of physiology,
J L Weiss, and J W Frederiksen, and M L Weisfeldt
March 1984, Archives of internal medicine,
Copied contents to your clipboard!