Influence of physiologic hyperglucagonemia on basal and insulin-inhibited splanchnic glucose output in normal man. 1976

P Felig, and J Wahren, and R Hendler

To evaluate the effects of physiologic hyperglucagonemia on splanchnic glucose output, glucagon was infused in a dose of 3 ng/kg per min to healthy subjects in the basal state and after splanchnic glucose output had been inhibited by an infusion of glucose (2 mg/kg per min). In the basal state, infusion of glucagon causing a 309 +/- 25 pg/ml rise in plasma concentration was accompanied by a rapid increase in splanchnic glucose output to values two to three times basal by 7-15 min. The rise in arterial blood glucose (0.5-1.5 mM) correlated directly with the increment in splanchnic glucose output. Despite continued glucagon infusion, and in the face of stable insulin levels, splanchnic glucose output declined after 22 min, returning to basal levels by 30-45 min. In the subjects initially receiving the glucose infusion, arterial insulin concentration rose by 5-12 muU/ml, while splanchnic glucose output fell by 85-100%. Infusion of glucagon causing an increment in plasma glucagon concentration of 272 +/- 30 pg/ml reversed the inhibition in splanchnic glucose production within 5 min. Splanchnic glucose output reached a peak increment 60% above basal levels at 10 min, and subsequently declined to levels 20-25% below basal at 30-45 min. These findings provide direct evidence that physiologic increments in plasma glucagon stimulate splanchnic glucose output in the basal state and reverse insulin-mediated inhibition of splanchnic glucose production in normal man. The transient nature of the stimulatory effect of glucagon on splanchnic glucose output suggests the rapid development of inhibition or reversal of glucagon action. This inhibition does not appear to depend on increased insulin secretio.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

P Felig, and J Wahren, and R Hendler
November 1981, Metabolism: clinical and experimental,
P Felig, and J Wahren, and R Hendler
January 1977, Metabolism: clinical and experimental,
P Felig, and J Wahren, and R Hendler
March 1977, The Journal of clinical endocrinology and metabolism,
P Felig, and J Wahren, and R Hendler
January 1988, International journal of clinical pharmacology, therapy, and toxicology,
P Felig, and J Wahren, and R Hendler
June 1979, The Journal of clinical investigation,
P Felig, and J Wahren, and R Hendler
February 1979, Diabetes,
P Felig, and J Wahren, and R Hendler
March 1959, Annals of the New York Academy of Sciences,
P Felig, and J Wahren, and R Hendler
December 1977, Acta endocrinologica,
Copied contents to your clipboard!