Identification and expression in mouse of two heparan sulfate glucosaminyl N-deacetylase/N-sulfotransferase genes. 1998

M Kusche-Gullberg, and I Eriksson, and D S Pikas, and L Kjellén
Department of Medical Biochemistry and Microbiology, University of Uppsala, S 751 23 Uppsala, Sweden. Marion.Kusche@medkem.uu.se

The biosynthesis of heparan sulfate/heparin is a complex process that requires the coordinate action of a number of different enzymes. In close connection with polymerization of the polysaccharide chain, the modification reactions are initiated by N-deacetylation followed by N-sulfation of N-acetylglucosamine units. These two reactions are carried out by a single protein. Proteins with such dual activities were first purified and cloned from rat liver and mouse mastocytoma. The mouse mastocytoma enzyme is encoded by an approximately 4-kilobase (kb) mRNA, whereas the rat liver transcript contains approximately 8 kb. In the present study, the primary structure of the enzyme encoded by the mouse 8-kb transcript is described. It is demonstrated that both the 4-and 8-kb transcripts have a wide tissue distribution and that they are encoded by separate genes. Characterization of the gene encoding the 4-kb transcript demonstrates that it spans a region of about 8 kb and that it contains at least 14 exons. The similarity of this gene and the previously characterized human gene for the 8-kb transcript is discussed.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000581 Amidohydrolases Any member of the class of enzymes that catalyze the cleavage of amide bonds and result in the addition of water to the resulting molecules. Amidases,Amidohydrolase
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

M Kusche-Gullberg, and I Eriksson, and D S Pikas, and L Kjellén
January 2010, Progress in molecular biology and translational science,
M Kusche-Gullberg, and I Eriksson, and D S Pikas, and L Kjellén
October 1996, The Journal of biological chemistry,
M Kusche-Gullberg, and I Eriksson, and D S Pikas, and L Kjellén
October 1997, The Journal of biological chemistry,
M Kusche-Gullberg, and I Eriksson, and D S Pikas, and L Kjellén
December 1999, The Journal of biological chemistry,
M Kusche-Gullberg, and I Eriksson, and D S Pikas, and L Kjellén
January 2006, Biochemical and biophysical research communications,
M Kusche-Gullberg, and I Eriksson, and D S Pikas, and L Kjellén
April 1999, The Journal of biological chemistry,
M Kusche-Gullberg, and I Eriksson, and D S Pikas, and L Kjellén
August 1998, FEBS letters,
M Kusche-Gullberg, and I Eriksson, and D S Pikas, and L Kjellén
February 2024, Nature communications,
M Kusche-Gullberg, and I Eriksson, and D S Pikas, and L Kjellén
September 2016, The Journal of biological chemistry,
Copied contents to your clipboard!