Swelling-activated potassium currents of Ehrlich ascites tumour cells. 1998

G Riquelme, and F V Sepúlveda, and F Jørgensen, and S Pedersen, and E K Hoffmann
Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70058 Correo 7, Santiago, Chile.

The K+ and Cl- currents activated by Ca2+-ionophore treatment or by hypotonic cell swelling have been studied in Ehrlich ascites tumour cells by the patch-clamp technique. A charybdotoxin-inhibitable K+ current was activated by increasing intracellular Ca2+ concentration. In contrast, the K+ current activated by cell swelling was insensitive to charybdotoxin as well as to apamin, suggesting that channels different from those sensitive to Ca2+ are responsible for regulatory volume adjustments in these cells. The magnitude of the K+ and Cl- currents activated by hypotonic challenge was markedly temperature-dependent, possibly reflecting the temperature-dependence of enzymes involved in the intracellular signalling of cell volume regulation.

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002286 Carcinoma, Ehrlich Tumor A transplantable, poorly differentiated malignant tumor which appeared originally as a spontaneous breast carcinoma in a mouse. It grows in both solid and ascitic forms. Ehrlich Ascites Tumor,Ascites Tumor, Ehrlich,Ehrlich Tumor Carcinoma,Tumor, Ehrlich Ascites
D006096 Gramicidin A group of peptide antibiotics from BACILLUS brevis. Gramicidin C or S is a cyclic, ten-amino acid polypeptide and gramicidins A, B, D are linear. Gramicidin is one of the two principal components of TYROTHRICIN. Gramicidin A,Gramicidin A(1),Gramicidin B,Gramicidin C,Gramicidin D,Gramicidin Dubos,Gramicidin J,Gramicidin K,Gramicidin NF,Gramicidin P,Gramicidin S,Gramicidins,Gramoderm,Linear Gramicidin,Gramicidin, Linear
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001030 Apamin A highly neurotoxic polypeptide from the venom of the honey bee (Apis mellifera). It consists of 18 amino acids with two disulfide bridges and causes hyperexcitability resulting in convulsions and respiratory paralysis.
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

G Riquelme, and F V Sepúlveda, and F Jørgensen, and S Pedersen, and E K Hoffmann
June 2000, Pflugers Archiv : European journal of physiology,
G Riquelme, and F V Sepúlveda, and F Jørgensen, and S Pedersen, and E K Hoffmann
May 1998, The Journal of membrane biology,
G Riquelme, and F V Sepúlveda, and F Jørgensen, and S Pedersen, and E K Hoffmann
May 2000, The Journal of physiology,
G Riquelme, and F V Sepúlveda, and F Jørgensen, and S Pedersen, and E K Hoffmann
September 1959, British journal of cancer,
G Riquelme, and F V Sepúlveda, and F Jørgensen, and S Pedersen, and E K Hoffmann
September 1977, Biochimica et biophysica acta,
G Riquelme, and F V Sepúlveda, and F Jørgensen, and S Pedersen, and E K Hoffmann
October 1967, Nature,
G Riquelme, and F V Sepúlveda, and F Jørgensen, and S Pedersen, and E K Hoffmann
February 1966, The Japanese journal of experimental medicine,
G Riquelme, and F V Sepúlveda, and F Jørgensen, and S Pedersen, and E K Hoffmann
January 1969, Enzymologia,
G Riquelme, and F V Sepúlveda, and F Jørgensen, and S Pedersen, and E K Hoffmann
June 1972, Blut,
G Riquelme, and F V Sepúlveda, and F Jørgensen, and S Pedersen, and E K Hoffmann
January 1954, Acta physiologica Academiae Scientiarum Hungaricae,
Copied contents to your clipboard!