Effect of destruction of noradrenergic neurones with DSP4 on performance on a free-operant timing schedule. 1998

S S Al-Zahrani, and A S Al-Ruwaitea, and M Y Ho, and C M Bradshaw, and E Szabadi
Department of Psychiatry, University of Nottingham, Queen's Medical Centre, UK.

This experiment examined the effect of destroying central noradrenergic neurones, using the selective neurotoxin DSP4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine], on performance in a free-operant timing schedule. Rats received either systemic treatment with DSP4 or vehicle-alone injections. They were trained to press levers for a sucrose reinforcer. Training sessions consisted of 40, 50-s trials in which reinforcers were available on a variable-interval 25-s schedule; in the first 25 s of each trial, reinforcers were only available for responses on lever A, whereas in the last 25 s reinforcers were available only for responses on lever B. Data were collected from probe trials (four per session), in which no reinforcers were delivered, during the last ten of 60 training sessions. Both groups showed decreasing response rates on lever A, and increasing response rates on lever B, as a function of time from the onset of the trial. Quantitative indices of timing behaviour were derived from a two-parameter logistic function fitted to the relative response rates on lever B (response rate on lever B, expressed as a percentage of overall response rate); this function accounted for > 90% of the data variance in each group. The DSP4-treated group showed a significantly lower value of the indifference point (i.e. the time corresponding to 50% responding on lever B) than the control group. The slope of the function and the rate of switching between response alternatives did not differ significantly between the two groups. The concentrations of noradrenaline were markedly reduced in the neocortex and hippocampus of the DSP4-treated group, but the concentrations of dopamine, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid were not significantly altered. It is suggested that results may be consistent with a role of the dorsal ascending noradrenergic pathway in behavioural "arousal".

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D012055 Reinforcement Schedule A schedule prescribing when the subject is to be reinforced or rewarded in terms of temporal interval in psychological experiments. The schedule may be continuous or intermittent. Reinforcement Schedules,Schedule, Reinforcement,Schedules, Reinforcement
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D003216 Conditioning, Operant Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced. Instrumental Learning,Learning, Instrumental,Operant Conditioning,Conditionings, Operant,Instrumental Learnings,Learnings, Instrumental,Operant Conditionings
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001596 Benzylamines Toluenes in which one hydrogen of the methyl group is substituted by an amino group. Permitted are any substituents on the benzene ring or the amino group. Phenylmethylamine,alpha-Aminotoluene,alpha Aminotoluene
D001679 Biogenic Amines A group of naturally occurring amines derived by enzymatic decarboxylation of the natural amino acids. Many have powerful physiological effects (e.g., histamine, serotonin, epinephrine, tyramine). Those derived from aromatic amino acids, and also their synthetic analogs (e.g., amphetamine), are of use in pharmacology. Amines, Biogenic,Biogenic Amine,Amine, Biogenic
D013563 Sympathectomy, Chemical Sympathectomy using chemicals (e.g., 6-hydroxydopamine or guanethidine) which selectively and reversibly destroy adrenergic nerve endings while leaving cholinergic nerve endings intact. Chemosympathectomy,Denervation, Sympathetic, Chemical,Chemical Sympathectomy,Chemical Sympathetic Denervation,Sympathetic Denervation, Chemical,Chemical Sympathectomies,Chemical Sympathetic Denervations,Chemosympathectomies,Denervation, Chemical Sympathetic,Denervations, Chemical Sympathetic,Sympathectomies, Chemical,Sympathetic Denervations, Chemical

Related Publications

S S Al-Zahrani, and A S Al-Ruwaitea, and M Y Ho, and C M Bradshaw, and E Szabadi
January 1983, Journal of the experimental analysis of behavior,
S S Al-Zahrani, and A S Al-Ruwaitea, and M Y Ho, and C M Bradshaw, and E Szabadi
June 1983, Brain research,
S S Al-Zahrani, and A S Al-Ruwaitea, and M Y Ho, and C M Bradshaw, and E Szabadi
December 2003, Behavioural pharmacology,
S S Al-Zahrani, and A S Al-Ruwaitea, and M Y Ho, and C M Bradshaw, and E Szabadi
December 2002, Behavioural pharmacology,
S S Al-Zahrani, and A S Al-Ruwaitea, and M Y Ho, and C M Bradshaw, and E Szabadi
March 1986, Neuropharmacology,
S S Al-Zahrani, and A S Al-Ruwaitea, and M Y Ho, and C M Bradshaw, and E Szabadi
December 2012, Behavioural brain research,
S S Al-Zahrani, and A S Al-Ruwaitea, and M Y Ho, and C M Bradshaw, and E Szabadi
May 2015, Behavioural processes,
S S Al-Zahrani, and A S Al-Ruwaitea, and M Y Ho, and C M Bradshaw, and E Szabadi
June 2020, Learning & behavior,
S S Al-Zahrani, and A S Al-Ruwaitea, and M Y Ho, and C M Bradshaw, and E Szabadi
March 2010, Neuroscience,
S S Al-Zahrani, and A S Al-Ruwaitea, and M Y Ho, and C M Bradshaw, and E Szabadi
May 1990, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!