Thyroid hormone depletion inhibits astrocytoma proliferation via a p53-independent induction of p21 (WAF1/CIP1). 1998

S A Toms, and A Hercbergs, and J Liu, and S Kondo, and G H Barnett, and G Casey, and B P Barna
Department of Neurological Surgery, Cleveland Clinic Foundation, OH 44195, USA.

BACKGROUND Clinical hypothyroidism has been associated with prolonged survival in several types of malignancies, but the mechanism of this effect is unknown. METHODS In vitro studies of thyroid hormone depletion (via culture in medium containing 5% thyroid hormone-depleted fetal bovine serum (FBS)) were carried out using a human glioblastoma cell line (WITG3) which expresses a mutant, non-functional p53. RESULTS Thyroid hormone depletion inhibited WITG3 proliferation compared to control medium containing 5% euthyroid FBS. There was no evidence of apoptosis and viability was not compromised. Cell cycle analysis by flow cytometry indicated that thyroid hormone depletion accumulated WITG3 cells in G1, with fewer cells progressing into S than in euthyroid medium. By immunoblotting, p21 (WAF1/CIP1) was only slightly detectable in lysates from WITG3 cells grown in control euthyroid medium; however, in thyroid hormone-depleted FBS, a marked induction of p2 1 occurred which could be reversed by exogenous thyroid hormone CONCLUSIONS These data indicate that thyroid hormone depletion may cause a G, arrest in astrocytoma mediated by a p53-independent induction of p21 (WAF1/CIP1). Results suggest a mechanism which may explain the effect of hypothyroidism on suppression of tumor cell growth.

UI MeSH Term Description Entries
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001254 Astrocytoma Neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors. Fibrillary astrocytomas are the most common type and may be classified in order of increasing malignancy (grades I through IV). In the first two decades of life, astrocytomas tend to originate in the cerebellar hemispheres; in adults, they most frequently arise in the cerebrum and frequently undergo malignant transformation. (From Devita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2013-7; Holland et al., Cancer Medicine, 3d ed, p1082) Astrocytoma, Subependymal Giant Cell,Glioma, Astrocytic,Oligoastrocytoma, Mixed,Pleomorphic Xanthoastrocytomas,Anaplastic Astrocytoma,Astrocytoma, Grade I,Astrocytoma, Grade II,Astrocytoma, Grade III,Astrocytoma, Protoplasmic,Astroglioma,Cerebral Astrocytoma,Childhood Cerebral Astrocytoma,Fibrillary Astrocytoma,Gemistocytic Astrocytoma,Intracranial Astrocytoma,Juvenile Pilocytic Astrocytoma,Pilocytic Astrocytoma,Subependymal Giant Cell Astrocytoma,Anaplastic Astrocytomas,Astrocytic Glioma,Astrocytic Gliomas,Astrocytoma, Anaplastic,Astrocytoma, Cerebral,Astrocytoma, Childhood Cerebral,Astrocytoma, Fibrillary,Astrocytoma, Gemistocytic,Astrocytoma, Intracranial,Astrocytoma, Juvenile Pilocytic,Astrocytoma, Pilocytic,Astrocytomas,Astrocytomas, Grade III,Astrogliomas,Cerebral Astrocytoma, Childhood,Cerebral Astrocytomas,Childhood Cerebral Astrocytomas,Fibrillary Astrocytomas,Gemistocytic Astrocytomas,Gliomas, Astrocytic,Grade I Astrocytoma,Grade I Astrocytomas,Grade II Astrocytoma,Grade II Astrocytomas,Grade III Astrocytoma,Grade III Astrocytomas,Intracranial Astrocytomas,Juvenile Pilocytic Astrocytomas,Mixed Oligoastrocytoma,Mixed Oligoastrocytomas,Pilocytic Astrocytoma, Juvenile,Pilocytic Astrocytomas,Pleomorphic Xanthoastrocytoma,Protoplasmic Astrocytoma,Protoplasmic Astrocytomas,Xanthoastrocytoma, Pleomorphic
D013963 Thyroid Hormones Natural hormones secreted by the THYROID GLAND, such as THYROXINE, and their synthetic analogs. Thyroid Hormone,Hormone, Thyroid,Hormones, Thyroid
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016213 Cyclins A large family of regulatory proteins that function as accessory subunits to a variety of CYCLIN-DEPENDENT KINASES. They generally function as ENZYME ACTIVATORS that drive the CELL CYCLE through transitions between phases. A subset of cyclins may also function as transcriptional regulators. Cyclin
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D050759 Cyclin-Dependent Kinase Inhibitor p21 A cyclin-dependent kinase inhibitor that mediates TUMOR SUPPRESSOR PROTEIN P53-dependent CELL CYCLE arrest. p21 interacts with a range of CYCLIN-DEPENDENT KINASES and associates with PROLIFERATING CELL NUCLEAR ANTIGEN and CASPASE 3. CDK2-Associated Protein 20 kDa,CDKN1 Protein,CDKN1A Protein,Cdk-Interacting Protein 1,Cdk2 Inhibitor Protein,Cell Cycle Regulator p21,Cyclin Kinase Inhibitor p21,Cyclin-Dependent Kinase Inhibitor 1A Protein,Senescent Cell-Derived Inhibitor Protein 1,p21 Cell Cycle Regulator,p21 Cyclin Kinase Inhibitor,CDK2 Associated Protein 20 kDa,Cdk Interacting Protein 1,Cyclin Dependent Kinase Inhibitor 1A Protein,Cyclin Dependent Kinase Inhibitor p21,Senescent Cell Derived Inhibitor Protein 1

Related Publications

S A Toms, and A Hercbergs, and J Liu, and S Kondo, and G H Barnett, and G Casey, and B P Barna
September 2014, Blood,
S A Toms, and A Hercbergs, and J Liu, and S Kondo, and G H Barnett, and G Casey, and B P Barna
July 1994, Cancer research,
S A Toms, and A Hercbergs, and J Liu, and S Kondo, and G H Barnett, and G Casey, and B P Barna
January 1995, Biochemical and biophysical research communications,
S A Toms, and A Hercbergs, and J Liu, and S Kondo, and G H Barnett, and G Casey, and B P Barna
March 1995, Oncology reports,
S A Toms, and A Hercbergs, and J Liu, and S Kondo, and G H Barnett, and G Casey, and B P Barna
March 2014, Journal of agricultural and food chemistry,
S A Toms, and A Hercbergs, and J Liu, and S Kondo, and G H Barnett, and G Casey, and B P Barna
July 2000, Neuroreport,
S A Toms, and A Hercbergs, and J Liu, and S Kondo, and G H Barnett, and G Casey, and B P Barna
January 2004, Cell death and differentiation,
S A Toms, and A Hercbergs, and J Liu, and S Kondo, and G H Barnett, and G Casey, and B P Barna
July 1999, Experimental cell research,
S A Toms, and A Hercbergs, and J Liu, and S Kondo, and G H Barnett, and G Casey, and B P Barna
December 1999, Neoplasia (New York, N.Y.),
S A Toms, and A Hercbergs, and J Liu, and S Kondo, and G H Barnett, and G Casey, and B P Barna
October 2001, Toxicological sciences : an official journal of the Society of Toxicology,
Copied contents to your clipboard!