Effect of fibroblastic growth factors (FGF) on steroid UDP-glucuronosyltransferase expression and activity in the LNCaP cell line. 1998

E Lévesque, and M Beaulieu, and C Guillemette, and D W Hum, and A Bélanger
MRC Group in Molecular Endocrinology, CHUL Research Center and Laval University, Quebec, Canada.

It is now widely accepted that factors other than androgens are crucial in the normal and abnormal growth of the prostate. In addition to hormones, many polypeptide growth factors, including the fibroblast growth factor family (FGF), can act as potent mitogens on cell proliferation. The FGF family of growth factors are essential factors for both normal and abnormal proliferation of prostate cells. To study the effect of FGFs on steroid glucuronidation, we used the human prostate cancer LNCaP cell line which is known to be stimulated by FGF resulting in increased cell proliferation. LNCaP cells express steroid metabolizing enzymes including uridine diphosphoglucuronosyltransferases (UGTs). In addition, LNCaP cells treated with dihydrotestosterone (DHT) and epidermal growth factor (EGF) express differential levels of the human UGT2B15 and UGT2B17 transcripts. In the present study, we examined the possible interaction between FGF and steroid UGT enzymes. Results show a dose dependent inhibition of DHT glucuronide (DHT-G) formation following treatment (6 days) with acidic FGF (aFGF) and basic FGF (bFGF). When cells were treated with 10 ng/ ml of FGFs, we observed 33 and 51% inhibition of glucuronidation activity using aFGF and bFGF respectively. Ribonuclease protection analyses revealed a 2 and 3 fold increase of UGT2B15 mRNA expression following treatment with aFGF (50 ng/ml) and bFGF (10 ng/ml) respectively. However, a slight decrease in UGT2B17 transcripts was observed, demonstrating a differential regulation. Since a reduction in the glucuronidation of DHT or its 5alpha-reduced metabolites may contribute to an increase in intraprostatic androgen levels, down-regulation of UGTs by growth factors such as FGFs may increase the proliferation of androgen-dependent tumors.

UI MeSH Term Description Entries
D008297 Male Males
D009376 Neoplasms, Hormone-Dependent Certain tumors that 1, arise in organs that are normally dependent on specific hormones and 2, are stimulated or caused to regress by manipulation of the endocrine environment. Hormone-Dependent Neoplasms,Hormone Dependent Neoplasms,Hormone-Dependent Neoplasm,Neoplasm, Hormone-Dependent,Neoplasms, Hormone Dependent
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012334 RNA, Neoplasm RNA present in neoplastic tissue. Neoplasm RNA
D013196 Dihydrotestosterone A potent androgenic metabolite of TESTOSTERONE. It is produced by the action of the enzyme 3-OXO-5-ALPHA-STEROID 4-DEHYDROGENASE. 5 alpha-Dihydrotestosterone,Androstanolone,Stanolone,17 beta-Hydroxy-5 beta-Androstan-3-One,17beta-Hydroxy-5alpha-Androstan-3-One,5 beta-Dihydrotestosterone,5-alpha Dihydrotestosterone,5-alpha-DHT,Anaprotin,Andractim,Dihydroepitestosterone,Gelovit,17 beta Hydroxy 5 beta Androstan 3 One,17beta Hydroxy 5alpha Androstan 3 One,5 alpha DHT,5 alpha Dihydrotestosterone,5 beta Dihydrotestosterone,Dihydrotestosterone, 5-alpha,beta-Hydroxy-5 beta-Androstan-3-One, 17

Related Publications

E Lévesque, and M Beaulieu, and C Guillemette, and D W Hum, and A Bélanger
February 1995, Molecular and cellular endocrinology,
E Lévesque, and M Beaulieu, and C Guillemette, and D W Hum, and A Bélanger
March 2003, Asian journal of andrology,
E Lévesque, and M Beaulieu, and C Guillemette, and D W Hum, and A Bélanger
July 1996, Endocrinology,
E Lévesque, and M Beaulieu, and C Guillemette, and D W Hum, and A Bélanger
December 2005, The Journal of pharmacology and experimental therapeutics,
E Lévesque, and M Beaulieu, and C Guillemette, and D W Hum, and A Bélanger
December 1995, The Journal of steroid biochemistry and molecular biology,
E Lévesque, and M Beaulieu, and C Guillemette, and D W Hum, and A Bélanger
December 2010, Drug metabolism and disposition: the biological fate of chemicals,
E Lévesque, and M Beaulieu, and C Guillemette, and D W Hum, and A Bélanger
July 2003, Biochemical pharmacology,
E Lévesque, and M Beaulieu, and C Guillemette, and D W Hum, and A Bélanger
February 2018, Molecules (Basel, Switzerland),
E Lévesque, and M Beaulieu, and C Guillemette, and D W Hum, and A Bélanger
September 2012, The Journal of pharmacology and experimental therapeutics,
E Lévesque, and M Beaulieu, and C Guillemette, and D W Hum, and A Bélanger
January 1994, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!