Overexpression of Bax gene sensitizes K562 erythroleukemia cells to apoptosis induced by selective chemotherapeutic agents. 1998

T Kobayashi, and S Ruan, and K Clodi, and K O Kliche, and H Shiku, and M Andreeff, and W Zhang
Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.

Bax and Bcl-2 are a pair of important genes that control programmed cell death, or apoptosis, with Bax being the apoptosis promoter and Bcl-2 the apoptosis protector. Although the detailed mechanism is unknown, the protein products of these two genes form protein dimers with each other and the relative ratio of the two proteins is believed to be a determinant of the balance between life and death. In our preliminary study, we found that K562 erythroleukemia cells have an extremely low level of endogenous Bcl-2 expression and a fairly high level of endogenous Bax expression. We constructed Bax and Bcl-2 expression vectors and transfected them into K562 cells. We found that transfection of Bax vector increased the expression of Bax protein; a shortened form of Bax also appeared. Cell death analysis using the Annexin V assay showed that the Bax vector caused significantly more apoptotic cells that the Bcl-2 or pCI-neo vector did. After selection with G418, Bax, Bcl-2 and pCI-neo stably transfected cells were established. These three cell lines were examined for their response to the chemotherapeutic agents ara-C, doxorubicin, etoposide and SN-38. Bax-K562 cells showed significantly higher fractions of apoptotic cells than pCI-neo-K562 cells when treated with ara-C, doxorubicin or SN-38. No sensitization effect was seen when etoposide was used. In contrast, Bcl-2-K562 cells had fewer apoptotic cells than pCI-neo-K562 cells after treatment with all these agents. Therefore, Bax may sensitize K562 cells to apoptosis induced by a wide range of, but not all, chemotherapeutic agents.

UI MeSH Term Description Entries
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D004915 Leukemia, Erythroblastic, Acute A myeloproliferative disorder characterized by neoplastic proliferation of erythroblastic and myeloblastic elements with atypical erythroblasts and myeloblasts in the peripheral blood. Di Guglielmo's Disease,Erythremic Myelosis,Erythroblastic Leukemia, Acute,Erythroleukemia,Leukemia, Myeloid, Acute, M6,Myeloid Leukemia, Acute, M6,Di Guglielmo Disease,Acute Erythroblastic Leukemia,Acute Erythroblastic Leukemias,Di Guglielmos Disease,Disease, Di Guglielmo,Disease, Di Guglielmo's,Erythremic Myeloses,Erythroblastic Leukemias, Acute,Erythroleukemias,Leukemia, Acute Erythroblastic,Leukemias, Acute Erythroblastic,Myeloses, Erythremic,Myelosis, Erythremic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051028 bcl-2-Associated X Protein A member of the Bcl-2 protein family and homologous partner of C-BCL-2 PROTO-ONCOGENE PROTEIN. It regulates the release of CYTOCHROME C and APOPTOSIS INDUCING FACTOR from the MITOCHONDRIA. Several isoforms of BCL2-associated X protein occur due to ALTERNATIVE SPLICING of the mRNA for this protein. Bax Protein,Bax-alpha Protein,Bax-omega Protein,Bax-sigma Protein,Bax Apoptosis Regulator Protein,Bax-beta Protein,Bax-delta Protein,bcl2-Associated X Protein,bcl2-Associated X Protein Isoform alpha,bcl2-Associated X Protein Isoform beta,bcl2-Associated X Protein Isoform delta,bcl2-Associated X Protein Isoform omega,bcl2-Associated X Protein Isoform sigma,Bax alpha Protein,Bax beta Protein,Bax delta Protein,Bax omega Protein,Bax sigma Protein,Protein, bcl-2-Associated X,X Protein, bcl-2-Associated,bcl 2 Associated X Protein,bcl2 Associated X Protein,bcl2 Associated X Protein Isoform alpha,bcl2 Associated X Protein Isoform beta,bcl2 Associated X Protein Isoform delta,bcl2 Associated X Protein Isoform omega,bcl2 Associated X Protein Isoform sigma
D019008 Drug Resistance, Neoplasm Resistance or diminished response of a neoplasm to an antineoplastic agent in humans, animals, or cell or tissue cultures. Antibiotic Resistance, Neoplasm,Antineoplastic Drug Resistance,Drug Resistance, Antineoplastic,Antineoplastic Agent Resistance,Neoplasm Drug Resistance,Resistance, Antineoplastic Agent,Resistance, Antineoplastic Drug

Related Publications

T Kobayashi, and S Ruan, and K Clodi, and K O Kliche, and H Shiku, and M Andreeff, and W Zhang
June 2002, Cancer chemotherapy and pharmacology,
T Kobayashi, and S Ruan, and K Clodi, and K O Kliche, and H Shiku, and M Andreeff, and W Zhang
January 2008, Anticancer research,
T Kobayashi, and S Ruan, and K Clodi, and K O Kliche, and H Shiku, and M Andreeff, and W Zhang
March 2005, Cell research,
T Kobayashi, and S Ruan, and K Clodi, and K O Kliche, and H Shiku, and M Andreeff, and W Zhang
April 2000, International journal of oncology,
T Kobayashi, and S Ruan, and K Clodi, and K O Kliche, and H Shiku, and M Andreeff, and W Zhang
July 1996, International journal of cancer,
T Kobayashi, and S Ruan, and K Clodi, and K O Kliche, and H Shiku, and M Andreeff, and W Zhang
October 2007, Zhongguo shi yan xue ye xue za zhi,
T Kobayashi, and S Ruan, and K Clodi, and K O Kliche, and H Shiku, and M Andreeff, and W Zhang
September 1999, Journal of radiation research,
T Kobayashi, and S Ruan, and K Clodi, and K O Kliche, and H Shiku, and M Andreeff, and W Zhang
December 2000, Japanese journal of cancer research : Gann,
T Kobayashi, and S Ruan, and K Clodi, and K O Kliche, and H Shiku, and M Andreeff, and W Zhang
November 2012, Leukemia research,
T Kobayashi, and S Ruan, and K Clodi, and K O Kliche, and H Shiku, and M Andreeff, and W Zhang
June 2008, Ai zheng = Aizheng = Chinese journal of cancer,
Copied contents to your clipboard!