The CFTR chloride channel: nucleotide interactions and temperature-dependent gating. 1998

C J Mathews, and J A Tabcharani, and J W Hanrahan
Department of Physiology, McGill University, Montréal, Québec, Canada.

The gating cycle of CFTR (Cystic Fibrosis Transmembrane conductance Regulator) chloride channels requires ATP hydrolysis and can be interrupted by exposure to the nonhydrolyzable nucleotide AMP-PNP. To further characterize nucleotide interactions and channel gating, we have studied the effects of AMP-PNP, protein kinase C (PKC) phosphorylation, and temperature on gating kinetics. The rate of channel locking increased from 1.05 x 10(-3) sec-1 to 58.7 x 10(-3) sec-1 when AMP-PNP concentration was raised from 0.5 to 5 mM in the presence of 1 mM MgATP and 180 nM protein kinase A catalytic subunit (PKA). Although rapid locking precluded estimation of Po or opening rate immediately after the addition of AMP-PNP to wild-type channels, analysis of locking rates in the presence of high AMP-PNP concentrations revealed two components. The appearance of a distinct, slow component at high [AMP-PNP] is evidence for AMP-PNP interactions at a second site, where competition with ATP would reduce Po and thereby delay locking. All channels exhibited locking when they were strongly phosphorylated by PKA, but not when exposed to PKC alone. AMP-PNP increased Po at temperatures above 30 degrees C but did not cause locking, evidence that the stabilizing interactions between domains, which have been proposed to maintain CFTR in the open burst state, are relatively weak. The temperature dependence of normal CFTR gating by ATP was strongly asymmetric, with the opening rate being much more temperature sensitive (Q10 = 9.6) than the closing rate (Q10 = 3.6). These results are consistent with a cyclic model for gating of phosphorylated CFTR.

UI MeSH Term Description Entries
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000266 Adenylyl Imidodiphosphate 5'-Adenylic acid, monoanhydride with imidodiphosphoric acid. An analog of ATP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It is a potent competitive inhibitor of soluble and membrane-bound mitochondrial ATPase and also inhibits ATP-dependent reactions of oxidative phosphorylation. Adenyl Imidodiphosphate,gamma-Imino-ATP,AMP-PNP,AMPPNP,ATP(beta,gamma-NH),Adenosine 5'-(beta,gamma-Imino)triphosphate,Adenylimidodiphosphate,Adenylylimidodiphosphate,Mg AMP-PNP,Mg-5'-Adenylylimidodiphosphate,beta,gamma-imido-ATP,gamma-Imido-ATP,AMP-PNP, Mg,Imidodiphosphate, Adenyl,Imidodiphosphate, Adenylyl,Mg 5' Adenylylimidodiphosphate,Mg AMP PNP,beta,gamma imido ATP,gamma Imido ATP,gamma Imino ATP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO
D017868 Cyclic AMP-Dependent Protein Kinases A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition. Adenosine Cyclic Monophosphate-Dependent Protein Kinases,Protein Kinase A,cAMP Protein Kinase,cAMP-Dependent Protein Kinases,Cyclic AMP-Dependent Protein Kinase,cAMP-Dependent Protein Kinase,Adenosine Cyclic Monophosphate Dependent Protein Kinases,Cyclic AMP Dependent Protein Kinase,Cyclic AMP Dependent Protein Kinases,Protein Kinase, cAMP,Protein Kinase, cAMP-Dependent,Protein Kinases, cAMP-Dependent,cAMP Dependent Protein Kinase,cAMP Dependent Protein Kinases
D019005 Cystic Fibrosis Transmembrane Conductance Regulator A chloride channel that regulates secretion in many exocrine tissues. Abnormalities in the CFTR gene have been shown to cause cystic fibrosis. (Hum Genet 1994;93(4):364-8) CFTR Protein,Chloride channels, ATP-gated CFTR,Chloride channels, ATP gated CFTR,Protein, CFTR

Related Publications

C J Mathews, and J A Tabcharani, and J W Hanrahan
December 2014, Pflugers Archiv : European journal of physiology,
C J Mathews, and J A Tabcharani, and J W Hanrahan
January 1998, Annual review of physiology,
C J Mathews, and J A Tabcharani, and J W Hanrahan
March 2012, Biochimica et biophysica acta,
C J Mathews, and J A Tabcharani, and J W Hanrahan
April 2005, The Journal of general physiology,
C J Mathews, and J A Tabcharani, and J W Hanrahan
January 1999, Physiological reviews,
C J Mathews, and J A Tabcharani, and J W Hanrahan
May 1996, The Journal of membrane biology,
C J Mathews, and J A Tabcharani, and J W Hanrahan
August 2010, Expert review of respiratory medicine,
C J Mathews, and J A Tabcharani, and J W Hanrahan
January 2017, Cellular and molecular life sciences : CMLS,
C J Mathews, and J A Tabcharani, and J W Hanrahan
January 1994, The Japanese journal of physiology,
C J Mathews, and J A Tabcharani, and J W Hanrahan
November 1994, Trends in biochemical sciences,
Copied contents to your clipboard!