Isolation and culture of epithelial cells from rat ductuli efferentes and initial segment epididymidis. 1998

Y C Chen, and D Bunick, and J M Bahr, and G R Klinefelter, and R A Hess
Veterinary Biosciences, University of Illinois, Urbana 61801, USA.

To improve the study of epithelial function in rat ductuli efferentes (efferent ductules) and initial segment epididymis, we developed a primary cell culture system with modification of the Klinefelter method (1992). The cultured efferent ductal epithelium was grown to confluence and the cells maintained many of the organelles characteristic of these cells in vivo, including dense-staining granules, indented nuclei and apical cilia. Ciliary beat was observed for up to 10 days in culture, Cultured initial segment epithelial cells were elongated and characterized by apical branched microvilli. Electron microscopy revealed intact cell junctions, and endocytotic apparatus and lysosomal granules. Ultrastructurally, the initial segment epithelium contained a well developed Golgi apparatus. For both epithelia, cell characteristics were also confirmed by indirect immunofluorescent staining for cytokeratins 8, 18. Endocytotic activity was detected by the uptake of cationic ferritin at the apical surface and within vesicles. Estrogen receptor and clusterin mRNAs were expressed in the cultured epithelia and no difference was found in their expressions when cultured with or without 10(-9)M 17-beta estradiol. Indirect immunofluorescent staining for clusterin further indicated that this protein was present in the cultures. In conclusion, these in vitro methods will be useful for the investigation of epithelial function in the head of the epididymis.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D004822 Epididymis The convoluted cordlike structure attached to the posterior of the TESTIS. Epididymis consists of the head (caput), the body (corpus), and the tail (cauda). A network of ducts leaving the testis joins into a common epididymal tubule proper which provides the transport, storage, and maturation of SPERMATOZOA.
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

Y C Chen, and D Bunick, and J M Bahr, and G R Klinefelter, and R A Hess
January 1985, Journal of andrology,
Y C Chen, and D Bunick, and J M Bahr, and G R Klinefelter, and R A Hess
September 1984, The American journal of anatomy,
Y C Chen, and D Bunick, and J M Bahr, and G R Klinefelter, and R A Hess
March 1985, The Anatomical record,
Y C Chen, and D Bunick, and J M Bahr, and G R Klinefelter, and R A Hess
January 1986, Andrologia,
Y C Chen, and D Bunick, and J M Bahr, and G R Klinefelter, and R A Hess
August 1982, The Anatomical record,
Y C Chen, and D Bunick, and J M Bahr, and G R Klinefelter, and R A Hess
January 1990, Andrologia,
Y C Chen, and D Bunick, and J M Bahr, and G R Klinefelter, and R A Hess
February 1990, Endocrinology,
Y C Chen, and D Bunick, and J M Bahr, and G R Klinefelter, and R A Hess
May 1977, The Anatomical record,
Y C Chen, and D Bunick, and J M Bahr, and G R Klinefelter, and R A Hess
June 1994, Cell and tissue research,
Copied contents to your clipboard!