Mercury-induced autoimmunity in Brown Norway rats: kinetics of changes in RT6+ T lymphocytes correlated with IgG isotypes of circulating autoantibodies to laminin 1. 1998

L L Kosuda, and B Whalen, and D L Greiner, and P E Bigazzi
Department of Pathology, University of Connecticut Health Center, Farmington 06030, USA.

Repeated exposure to mercury causes various autoimmune effects in rats of the Brown Norway (BN) strain. Previous studies from our laboratory have shown that on day 15 of HgCl2 treatment BN rats exhibit a relative decrease in RT6.2+ T cells. At the same time, they produce high levels of autoantibodies to renal antigens and experience a membranous glomerulonephropathy. In contrast, Lewis (LEW) rats are resistant to autoimmunity caused by mercury and do not demonstrate a decrease in RT6+ cells after administration of HgCl2. In the present paper we provide novel information on the correlation between changes in RT6.2+ lymph node T cells and the production of autoantibodies to laminin 1, obtained by detailed kinetic studies of HgCl2-treated BN rats. We have confirmed a decrease in the percentage of RT6.2+ lymphocytes on day 15 of mercury treatment, despite a significant increase in the number of peripheral lymphocytes. No such changes were observed in LEW rats. We have determined that on day 15 the percentage decrease in RT6+ cells is evident in both RT6.2+CD4+ and RT6.2+CD8+ T cell subsets. Kinetic studies demonstrated that significant changes in the percentage of RT6.2+ cells are first observed by day 8 and continue through days 11 and 15. We have also observed a significant percent decrease in CD4+ T lymphocytes as well as an increase in CD4-CD8- cells. The dramatic increase in the percentage of these double negative cells at the level of peripheral lymphoid tissues does not appear to be due to higher thymic output, since there was a decrease in the percentage of TCR+Thy1+ cells, a phenotype that is associated with recent thymic emigrants. Finally, we have demonstrated that 100% of HgCl2-treated BN rats had circulating antibodies that reacted with both mouse and rat laminin 1, i.e. are autoantibodies to laminin 1. These autoantibodies were predominantly of the IgG1 and IgG2a isotype, possibly as the result of a polarized autoimmune response driven by Type 2 cytokines. A kinetic investigation showed that significant levels of IgG1 and IgG2a autoantibodies to laminin 1 were first presentin the circulation by day 11. The inverse correlation between levels of RT6.2+ T lymphocytes and autoantibodies to laminin 1 suggests that mercury may induce autoimmune responses in BN rats by its effects on these immunoregulatory cells.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008627 Mercuric Chloride Mercury chloride (HgCl2). A highly toxic compound that volatizes slightly at ordinary temperature and appreciably at 100 degrees C. It is corrosive to mucous membranes and used as a topical antiseptic and disinfectant. Mercury Dichloride,Corrosive Sublimate,HgCl2,Mercuric Perchloride,Mercury Bichloride,Mercury Perchloride,Sublimate,Bichloride, Mercury,Chloride, Mercuric,Dichloride, Mercury,Perchloride, Mercuric,Perchloride, Mercury,Sublimate, Corrosive
D011914 Rats, Inbred BN An inbred strain of rat that is widely used in a variety of research areas such as the study of ASTHMA; CARCINOGENESIS; AGING; and LEUKEMIA. Rats, Inbred Brown Norway,Rats, BN,BN Rat,BN Rat, Inbred,BN Rats,BN Rats, Inbred,Inbred BN Rat,Inbred BN Rats,Rat, BN,Rat, Inbred BN
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001323 Autoantibodies Antibodies that react with self-antigens (AUTOANTIGENS) of the organism that produced them. Autoantibody
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

L L Kosuda, and B Whalen, and D L Greiner, and P E Bigazzi
June 1993, Environmental health perspectives,
L L Kosuda, and B Whalen, and D L Greiner, and P E Bigazzi
June 1991, Cellular immunology,
L L Kosuda, and B Whalen, and D L Greiner, and P E Bigazzi
July 1994, Journal of toxicology and environmental health,
L L Kosuda, and B Whalen, and D L Greiner, and P E Bigazzi
April 1990, Journal of immunology (Baltimore, Md. : 1950),
L L Kosuda, and B Whalen, and D L Greiner, and P E Bigazzi
May 1993, The Journal of experimental medicine,
L L Kosuda, and B Whalen, and D L Greiner, and P E Bigazzi
November 1994, Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology,
L L Kosuda, and B Whalen, and D L Greiner, and P E Bigazzi
July 1992, Laboratory investigation; a journal of technical methods and pathology,
L L Kosuda, and B Whalen, and D L Greiner, and P E Bigazzi
September 1986, Clinical immunology and immunopathology,
L L Kosuda, and B Whalen, and D L Greiner, and P E Bigazzi
July 1990, Clinical and experimental immunology,
L L Kosuda, and B Whalen, and D L Greiner, and P E Bigazzi
February 1989, Transplantation proceedings,
Copied contents to your clipboard!