The Dorsal-related immunity factor (Dif) can define the dorsal-ventral axis of polarity in the Drosophila embryo. 1998

D Stein, and J S Goltz, and J Jurcsak, and L Stevens
Department of Molecular Genetics and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. stein@aecom.yu.edu

In Drosophila embryos, dorsal-ventral polarity is defined by a signal transduction pathway that regulates nuclear import of the Dorsal protein. Dorsal protein's ability to act as a transcriptional activator of some zygotic genes and a repressor of others defines structure along the dorsal-ventral axis. Dorsal is a member of a group of proteins, the Rel-homologous proteins, whose activity is regulated at the level of nuclear localization. Dif, a more recently identified Drosophila Rel-homologue, has been proposed to act as a mediator of the immune response in Drosophila. In an effort to understand the function and regulation of Rel-homologous proteins in Drosophila, we have expressed Dif protein in Drosophila embryos derived from dorsal mutant mothers. We found that the Dif protein was capable of restoring embryonic dorsal-ventral pattern elements and was able to define polarity correctly with respect to the orientation of the egg shell. This, together with the observation that the ability of Dif to restore a dorsal-ventral axis depended on the signal transduction pathway that normally regulates Dorsal, suggests that Dif protein formed a nuclear concentration gradient similar to that seen for Dorsal. By studying the expression of Dorsal target genes we found that Dif could activate the zygotic genes that Dorsal activates and repress the genes repressed by Dorsal. Differences in the expression of these target genes, as well as the results from interaction studies carried out in yeast, suggest that Dif is not capable of synergizing with the basic helix-loop-helix transcription factors with which Dorsal normally interacts, and thereby lacks an important component of Dorsal-mediated pattern formation.

UI MeSH Term Description Entries
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010750 Phosphoproteins Phosphoprotein
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests

Related Publications

D Stein, and J S Goltz, and J Jurcsak, and L Stevens
August 1993, Current opinion in genetics & development,
D Stein, and J S Goltz, and J Jurcsak, and L Stevens
June 1990, Seminars in cell biology,
D Stein, and J S Goltz, and J Jurcsak, and L Stevens
November 1998, Cell,
D Stein, and J S Goltz, and J Jurcsak, and L Stevens
June 1992, Development (Cambridge, England),
D Stein, and J S Goltz, and J Jurcsak, and L Stevens
December 2003, Current biology : CB,
D Stein, and J S Goltz, and J Jurcsak, and L Stevens
July 2009, Current biology : CB,
D Stein, and J S Goltz, and J Jurcsak, and L Stevens
July 1995, The EMBO journal,
D Stein, and J S Goltz, and J Jurcsak, and L Stevens
May 1994, Development (Cambridge, England),
Copied contents to your clipboard!