Morphine administered in the substantia gelatinosa of the spinal trigeminal nucleus caudalis inhibits nociceptive activities in the spinal trigeminal nucleus oralis. 1998

R Dallel, and C Dualé, and J L Molat
Laboratoire de Physiologie Oro-Faciale, Faculté de Chirurgie Dentaire, 63000 Clermont-Ferrand, France.

The present study investigates the effects of morphine microinjection into the spinal trigeminal nucleus caudalis (Sp5C) or the spinal trigeminal nucleus oralis (Sp5O) on C-fiber-evoked activities of Sp5O convergent neurons, after supramaximal percutaneous electrical stimulation in halothane-anesthetized rats. When it was microinjected into the Sp5O, morphine (2.5 microg in 0. 25 microl) never depressed the C-fiber-evoked responses of Sp5O convergent neurons (n = 13), whereas these neurons were responsive to the inhibitory effects of systemic morphine (6 mg/kg, i.v.) in a naloxone-reversible manner. On the contrary, morphine microinjected into the Sp5C produced a naloxone-reversible inhibition of the C-fiber-evoked responses of Sp5O neurons (n = 14). The magnitude and the time course of this effect varied according to the location of the injection sites. After microinjection into the superficial laminae (n = 7), a strong depressive effect of morphine (7 +/- 5% of control) on the C-fiber-evoked responses was apparent as soon as 5 min after the injection and could always be reversed by naloxone, administered either intravenously (0.4 mg/kg) or locally (2.5 microg in 0.6 microl) at the same site as morphine. After microinjection into deeper laminae (V-VI), a significant depressive effect (34 +/- 5% of control) of morphine could be detected only 20 min after the injection and was reversed only by intravenous administration of naloxone. These results suggest that morphine exerts its antinociceptive action on Sp5O convergent neurons by blocking the C-fiber inputs that relay in the Sp5C substantia gelatinosa. The mechanisms that underlie the activation of Sp5O convergent neurons by C-fibers and the inhibition of C-fiber-evoked responses of Sp5O convergent neurons by morphine microinjected into the Sp5C are discussed.

UI MeSH Term Description Entries
D008297 Male Males
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009055 Mouth The oval-shaped oral cavity located at the apex of the digestive tract and consisting of two parts: the vestibule and the oral cavity proper. Oral Cavity,Cavitas Oris,Cavitas oris propria,Mouth Cavity Proper,Oral Cavity Proper,Vestibule Oris,Vestibule of the Mouth,Cavity, Oral
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor

Related Publications

R Dallel, and C Dualé, and J L Molat
August 1975, The Journal of comparative neurology,
R Dallel, and C Dualé, and J L Molat
September 2015, European journal of pharmacology,
R Dallel, and C Dualé, and J L Molat
May 1976, The Journal of comparative neurology,
Copied contents to your clipboard!