Examination of ferrochelatase mutations that cause erythropoietic protoporphyria. 1998

V M Sellers, and T A Dailey, and H A Dailey
Department of Microbiology, University of Georgia, Athens, GA, USA.

Ferrochelatase (E.C. 4.99.1.1), the enzyme that catalyzes the terminal step in the heme biosynthetic pathway, is the site of defect in the human inherited disease erythropoietic protoporphyria (EPP). Previously it has been demonstrated that patients with EPP may have missense mutations leading to amino acid substitutions, early chain termination, or exon deletions. While it has been clearly demonstrated that two missense mutations result in lowered enzyme activity, it has never been shown what effect specific exon deletions may have. In the current work, recombinant human ferrochelatase has been engineered to have individual exon deletions corresponding to exons 3 through 11. When expressed in Escherichia coli, none of these possesses significant enzyme activity and all lack the [2Fe-2S] cluster. One of the human missense mutations, F417S, and a series of amino acid replacements at this site (ie, F417W, F417Y, and F417L) were examined. With the exception of F417L, all lacked enzyme activity and did not contain the [2Fe-2S] cluster in vivo or as isolated in vitro.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005294 Ferrochelatase A mitochondrial enzyme found in a wide variety of cells and tissues. It is the final enzyme in the 8-enzyme biosynthetic pathway of HEME. Ferrochelatase catalyzes ferrous insertion into protoporphyrin IX to form protoheme or heme. Deficiency in this enzyme results in ERYTHROPOIETIC PROTOPORPHYRIA. Heme Synthetase,Porphyrin-Metal Chelatase,Protoheme Ferro-Lyase,Zinc Chelatase,Chelatase, Porphyrin-Metal,Chelatase, Zinc,Ferro-Lyase, Protoheme,Porphyrin Metal Chelatase,Protoheme Ferro Lyase,Synthetase, Heme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

V M Sellers, and T A Dailey, and H A Dailey
January 1994, Biochimica et biophysica acta,
V M Sellers, and T A Dailey, and H A Dailey
November 1997, The Journal of investigative dermatology,
V M Sellers, and T A Dailey, and H A Dailey
December 1991, Biochemical and biophysical research communications,
V M Sellers, and T A Dailey, and H A Dailey
February 2002, Cellular and molecular biology (Noisy-le-Grand, France),
V M Sellers, and T A Dailey, and H A Dailey
February 1996, The Journal of investigative dermatology,
V M Sellers, and T A Dailey, and H A Dailey
January 1980, The International journal of biochemistry,
V M Sellers, and T A Dailey, and H A Dailey
September 1998, The Journal of investigative dermatology,
V M Sellers, and T A Dailey, and H A Dailey
April 1989, The Journal of dermatology,
V M Sellers, and T A Dailey, and H A Dailey
April 2007, Molecular genetics and metabolism,
Copied contents to your clipboard!