Activation of Ca(2+)-activated K+ (maxi-K+) channel by angiotensin II in myocytes of the guinea pig ileum. 1998

F Romero, and B A Silva, and V L Nouailhetas, and J Aboulafia
Department of Biophysics, Universidade Federal de São Paulo, Escola Paulista de Medicina, Brazil.

We investigated the regulation of the Ca(2+)-activated K+ (maxi-K+) channel by angiotensin II (ANG II) and its synthetic analog, [Lys2]ANG II, in freshly dispersed intestinal myocytes. We identified a maxi-K+ channel population in the inside-out patch configuration on the basis of its conductance (257 +/- 4 pS in symmetrical 150 mM KCl solution), voltage and Ca2+ dependence of channel opening, low Na(+)-to-K+ and Cl(-)-to-K+ permeability ratios, and blockade by external Cs+ and tetraethylammonium chloride. ANG II and [Lys2]ANG II caused an indirect, reversible, Ca(2+)- and dose-dependent activation of maxi-K+ channels in cell-attached experiments when cells were bathed in high-K+ solution. This effect was reversibly blocked by DUP-753, being that it is mediated by the AT1 receptor. Evidences that activation of the maxi-K+ channel by ANG II requires a rise in intracellular Ca2+ concentration ([Ca2+]i) as an intermediate step were the shift of the open probability of the channel-membrane potential relationship to less positive membrane potentials and the sustained increase in [Ca2+]i in fura 2-loaded myocytes. The preservation of the pharmacomechanical coupling of ANG II in these cells provides a good model for the study of transmembrane signaling responses to ANG II and analogs in this tissue.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D008297 Male Males
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

F Romero, and B A Silva, and V L Nouailhetas, and J Aboulafia
May 1997, The American journal of physiology,
F Romero, and B A Silva, and V L Nouailhetas, and J Aboulafia
August 1993, The Journal of general physiology,
F Romero, and B A Silva, and V L Nouailhetas, and J Aboulafia
May 2002, European journal of pharmacology,
F Romero, and B A Silva, and V L Nouailhetas, and J Aboulafia
October 1999, The American journal of physiology,
F Romero, and B A Silva, and V L Nouailhetas, and J Aboulafia
November 1996, Hearing research,
F Romero, and B A Silva, and V L Nouailhetas, and J Aboulafia
March 1993, European journal of pharmacology,
F Romero, and B A Silva, and V L Nouailhetas, and J Aboulafia
January 1992, The Japanese journal of physiology,
F Romero, and B A Silva, and V L Nouailhetas, and J Aboulafia
January 1997, Biophysical journal,
F Romero, and B A Silva, and V L Nouailhetas, and J Aboulafia
January 2006, International archives of allergy and immunology,
F Romero, and B A Silva, and V L Nouailhetas, and J Aboulafia
May 1962, The American journal of physiology,
Copied contents to your clipboard!