ANG II controls Na(+)-K+(NH4+)-2Cl- cotransport via 20-HETE and PKC in medullary thick ascending limb. 1998

H Amlal, and C LeGoff, and C Vernimmen, and M Soleimani, and M Paillard, and M Bichara
Institut National de la Santé et de la Recherche Médicale Unité 356, Université Pierre et Marie Curie, Paris, France.

Cell pH was monitored in medullary thick ascending limbs to determine effects of ANG II on Na(+)-K+(NH4+)-2Cl- cotransport. ANG II at 10(-16) to 10(-12) M inhibited 30-50% (P < 0.005), but higher ANG II concentrations were stimulatory compared with the 10(-12) M ANG II level cotransport activity; eventually, 10(-6) M ANG II stimulated 34% cotransport activity (P < 0.003). Inhibition by 10(-12) M ANG II was abolished by phospholipase C (PLC), diacylglycerol lipase, or cytochrome P-450-dependent monooxygenase blockade; 10(-12) M ANG II had no effect additive to inhibition by 20-hydroxyeicosatetranoic acid (20-HETE). Stimulation by 10(-6) M ANG II was abolished by PLC and protein kinase C (PKC) blockade and was partially suppressed when the rise in cytosolic Ca2+ was prevented. All ANG II effects were abolished by DUP-753 (losartan) but not by PD-123319. Thus < or = 10(-12) M ANG II inhibits via 20-HETE, whereas > or = 5 x 10(-11) M ANG II stimulates via PKC Na(+)-K+(NH4+)-2Cl- cotransport; all ANG II effects involve AT1 receptors and PLC activation.

UI MeSH Term Description Entries
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D008138 Loop of Henle The U-shaped portion of the renal tubule in the KIDNEY MEDULLA, consisting of a descending limb and an ascending limb. It is situated between the PROXIMAL KIDNEY TUBULE and the DISTAL KIDNEY TUBULE. Ascending Limb of Loop of Henle,Descending Limb of Loop of Henle,Henle Loop
D008297 Male Males
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D006893 Hydroxyeicosatetraenoic Acids Eicosatetraenoic acids substituted in any position by one or more hydroxy groups. They are important intermediates in a series of biosynthetic processes leading from arachidonic acid to a number of biologically active compounds such as prostaglandins, thromboxanes, and leukotrienes. HETE,Acids, Hydroxyeicosatetraenoic
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium

Related Publications

H Amlal, and C LeGoff, and C Vernimmen, and M Soleimani, and M Paillard, and M Bichara
February 1997, The American journal of physiology,
H Amlal, and C LeGoff, and C Vernimmen, and M Soleimani, and M Paillard, and M Bichara
September 1989, Kidney international,
H Amlal, and C LeGoff, and C Vernimmen, and M Soleimani, and M Paillard, and M Bichara
July 1996, The American journal of physiology,
H Amlal, and C LeGoff, and C Vernimmen, and M Soleimani, and M Paillard, and M Bichara
November 1993, Biochimica et biophysica acta,
H Amlal, and C LeGoff, and C Vernimmen, and M Soleimani, and M Paillard, and M Bichara
December 1996, The American journal of physiology,
H Amlal, and C LeGoff, and C Vernimmen, and M Soleimani, and M Paillard, and M Bichara
June 1989, Hospital practice (Office ed.),
H Amlal, and C LeGoff, and C Vernimmen, and M Soleimani, and M Paillard, and M Bichara
October 2000, The Journal of biological chemistry,
H Amlal, and C LeGoff, and C Vernimmen, and M Soleimani, and M Paillard, and M Bichara
February 1991, The Journal of membrane biology,
H Amlal, and C LeGoff, and C Vernimmen, and M Soleimani, and M Paillard, and M Bichara
January 2003, Diabetologia,
H Amlal, and C LeGoff, and C Vernimmen, and M Soleimani, and M Paillard, and M Bichara
October 2000, Kidney international,
Copied contents to your clipboard!