Mechanism of all trans-retinoic acid and glucocorticoid regulation of surfactant protein mRNA. 1998

T N George, and O L Miakotina, and K L Goss, and J M Snyder
Department of Pediatrics, University of Iowa, Iowa City 52242, USA.

The surfactant proteins (SPs) are required for the normal function of pulmonary surfactant, a lipoprotein substance that prevents alveolar collapse at end expiration. We characterized the effects of cortisol and all trans-retinoic acid (RA) on SP-A and SP-B gene expression in H441 cells, a human pulmonary adenocarcinoma cell line. Cortisol, at 10(-6) M, caused a significant inhibition of SP-A mRNA to levels that were 60-70% of controls and a five- to sixfold increase in the levels of SP-B mRNA. RA alone (10(-6) M) had no effect on SP-A mRNA levels and modestly reduced the inhibitory effect of cortisol. RA alone and the combination of cortisol and RA both significantly increased SP-B mRNA levels. RA had no effect on the rate of SP-A gene transcription or on SP-A mRNA stability. Cortisol alone and the combination of cortisol and RA significantly inhibited the rate of SP-A gene transcription but had no effect on SP-A mRNA half-life. RA at 10(-6) M had no effect on the rate of SP-B gene transcription but prolonged SP-B mRNA half-life. Cortisol alone and the combination of cortisol and RA caused a significant increase in the rate of SP-B gene transcription and also caused a significant increase in SP-B mRNA stability. We conclude that RA has no effect on SP-A gene expression and increases SP-B mRNA levels by an effect on SP-B mRNA stability and not on the rate of SP-B gene transcription. In addition, the effects of the combination of RA and cortisol were generally similar to those of cortisol alone.

UI MeSH Term Description Entries
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D011663 Pulmonary Surfactants Substances and drugs that lower the SURFACE TENSION of the mucoid layer lining the PULMONARY ALVEOLI. Surfactants, Pulmonary,Pulmonary Surfactant,Surfactant, Pulmonary
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

T N George, and O L Miakotina, and K L Goss, and J M Snyder
October 2006, International journal of experimental pathology,
T N George, and O L Miakotina, and K L Goss, and J M Snyder
May 2009, The FEBS journal,
T N George, and O L Miakotina, and K L Goss, and J M Snyder
February 2010, Zhongguo shi yan xue ye xue za zhi,
T N George, and O L Miakotina, and K L Goss, and J M Snyder
January 1995, Skin pharmacology : the official journal of the Skin Pharmacology Society,
T N George, and O L Miakotina, and K L Goss, and J M Snyder
January 1995, The Journal of the Association of Physicians of India,
T N George, and O L Miakotina, and K L Goss, and J M Snyder
January 1997, Biochemical and biophysical research communications,
T N George, and O L Miakotina, and K L Goss, and J M Snyder
July 2007, International journal of pharmaceutics,
T N George, and O L Miakotina, and K L Goss, and J M Snyder
April 1997, Gan to kagaku ryoho. Cancer & chemotherapy,
T N George, and O L Miakotina, and K L Goss, and J M Snyder
September 1992, European journal of haematology,
Copied contents to your clipboard!