Effects of left ventricular hypertrophy on force and Ca2+ handling in isolated rat myocardium. 1998

L S Maier, and R Brandes, and B Pieske, and D M Bers
Department of Physiology, Loyola University Chicago, Maywood, Illinois 60153, USA.

To study the effect of left ventricular (LV) hypertrophy on force and Ca2+ handling in isolated rat myocardium, LV hypertrophy was induced in rats by banding of the abdominal aorta. After 16 wk, arterial pressure was assessed by catheterization. LV trabeculae were isolated and loaded with indo 1 salt by iontophoretic injection. Isometric force and intracellular free Ca2+ concentration ([Ca2+]i) were measured at stimulation frequencies between 0.25 and 3 Hz and rest intervals between 2 and 240 s. Sarcoplasmic reticulum (SR) Ca2+ content was also investigated using rapid cooling contractures (RCC). Systolic and diastolic pressure as well as heart weight-to-body weight ratios were significantly elevated in banded compared with control animals (167 vs. 117 mmHg, 108 vs. 83 mmHg, and 4.6 vs. 4.0 mg/g, respectively). At high frequencies, twitch relaxation and [Ca2+]i decline rates were significantly slower in banded compared with control rats, and diastolic [Ca2+]i was higher in the banded rat muscles (at 3 Hz, force half-time = 83 vs. 68 ms; time constant of [Ca2+]i decline = 208 vs. 118 ms; and diastolic [Ca2+]i = 505 vs. 353 nM). These differences could not be ascribed to altered Na+/Ca2+ exchange, since twitch relaxation and Ca2+ handling were not different between groups in the presence of caffeine (or cyclopiazonic acid plus ryanodine), where relaxation depends primarily on Na+/Ca2+ exchange. After long rest intervals (> or = 120 s), control rats showed a significant rest potentiation of force and Ca2+ transients, whereas banded rats did not. In addition, RCC amplitudes increased with rest in control but were unaltered in banded rats. In summary, pressure-overload hypertrophy was associated with slower twitch relaxation and [Ca2+]i decline but also with blunted rest potentiation of twitches and SR Ca2+ content of LV trabeculae. The decrease in SR Ca(2+)-ATPase function in banded rats may contribute to the observed diastolic dysfunction associated with pressure-overload hypertrophy.

UI MeSH Term Description Entries
D008026 Ligation Application of a ligature to tie a vessel or strangulate a part. Ligature,Ligations,Ligatures
D008297 Male Males
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L S Maier, and R Brandes, and B Pieske, and D M Bers
April 1999, Zhonghua yi xue za zhi,
L S Maier, and R Brandes, and B Pieske, and D M Bers
November 1990, British journal of pharmacology,
L S Maier, and R Brandes, and B Pieske, and D M Bers
November 1998, Journal of molecular and cellular cardiology,
L S Maier, and R Brandes, and B Pieske, and D M Bers
June 1994, The American journal of physiology,
L S Maier, and R Brandes, and B Pieske, and D M Bers
September 2017, Expert review of cardiovascular therapy,
L S Maier, and R Brandes, and B Pieske, and D M Bers
July 1999, Circulation research,
L S Maier, and R Brandes, and B Pieske, and D M Bers
June 2010, Journal of molecular and cellular cardiology,
L S Maier, and R Brandes, and B Pieske, and D M Bers
June 1996, Biophysical journal,
L S Maier, and R Brandes, and B Pieske, and D M Bers
January 2003, Clinical cardiology,
Copied contents to your clipboard!