Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers. 1998

Z Chen, and L H Lash
Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA.

The role of organic anion transporters in the mitochondrial uptake of glutathione (GSH) was investigated by assessing competition with substrates or inhibition with inhibitors of specific carriers and modulation of mitochondrial energetics. Potential artifacts in the transport methodology, including contamination of matrix space with extramitochondrial fluid, changes in matrix volume during incubations, efflux of transported GSH during sample processing, induction of the membrane permeability transition, contamination of the mitochondrial preparation with plasma membranes and GSH degradation, were corrected or eliminated. Substrates (i.e., malate, succinate) and an inhibitor (i.e., butylmalonate) of the dicarboxylate carrier, an inhibitor (i.e., phenylsuccinate) of the 2-oxoglutarate carrier, and glutamate produced significant inhibition of GSH uptake whereas substrates and inhibitors of the mono- and tricarboxylate carriers were generally without effect. Phosphoenolpyruvate, which is a substrate for the tricarboxylate carrier, inhibited GSH uptake, but this was due to induction of the membrane permeability transition and not to competition for uptake. Although glutamate inhibited GSH uptake, the converse did not occur. GSH uptake was pH-independent and aspartate had no effect, which suggest that the glutamate and glutamate-aspartate carriers are not involved in GSH uptake but that the glutamyl residue of GSH may be important in its transport. GSH uptake was dependent on phosphate and ATP generation. Hence, we conclude that both the dicarboxylate and 2-oxoglutarate carriers of the inner membrane can catalyze uptake of GSH into the matrix. The function of an additional, novel transporter cannot be excluded at present. This is the first study to define the function of mitochondrial anion carriers in GSH transport.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

Z Chen, and L H Lash
October 1993, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!