Alternatively spliced forms of cyclin D1 modulate entry into the cell cycle in an inverse manner. 1998

H Sawa, and T A Ohshima, and H Ukita, and H Murakami, and Y Chiba, and H Kamada, and M Hara, and I Saito
Department of Neurosurgery, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.

Alternative splicing of cyclin D1 gene mRNA has recently been demonstrated. The novel transcript shows no splicing at the downstream exon 4 boundary and encodes a protein with an altered carboxyl-terminal domain that is a cyclin D1 variant; exon 5 is not included in the coding sequence which terminates downstream of exon 4. We here produced cells that exogenously express each form of cyclin D1 and analysed their cell cycle regulation. We found that (1) alternative splicing forms of cyclin D1 modulated entry into the cell cycle in an inverse manner; (2) both splicing forms suppressed cell growth; and (3) cells overexpressing form [a] were inhibited from entry into and completion of the S phase, although form [b]-expressing cells showed no reduction of G1- to S transition. We also found that overexpression of either cyclin D1 form upregulated Rb gene products, suggesting that this upregulation may be one of the causes of growth suppression in cyclin D1 overexpressing cells.

UI MeSH Term Description Entries
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

H Sawa, and T A Ohshima, and H Ukita, and H Murakami, and Y Chiba, and H Kamada, and M Hara, and I Saito
November 2003, Cancer research,
H Sawa, and T A Ohshima, and H Ukita, and H Murakami, and Y Chiba, and H Kamada, and M Hara, and I Saito
May 2004, Developmental cell,
H Sawa, and T A Ohshima, and H Ukita, and H Murakami, and Y Chiba, and H Kamada, and M Hara, and I Saito
August 1996, Oncogene,
H Sawa, and T A Ohshima, and H Ukita, and H Murakami, and Y Chiba, and H Kamada, and M Hara, and I Saito
September 1998, Molecular and cellular biology,
H Sawa, and T A Ohshima, and H Ukita, and H Murakami, and Y Chiba, and H Kamada, and M Hara, and I Saito
July 2011, Proceedings of the National Academy of Sciences of the United States of America,
H Sawa, and T A Ohshima, and H Ukita, and H Murakami, and Y Chiba, and H Kamada, and M Hara, and I Saito
October 1999, Current biology : CB,
H Sawa, and T A Ohshima, and H Ukita, and H Murakami, and Y Chiba, and H Kamada, and M Hara, and I Saito
April 2006, Oncogene,
H Sawa, and T A Ohshima, and H Ukita, and H Murakami, and Y Chiba, and H Kamada, and M Hara, and I Saito
August 2012, Gene,
H Sawa, and T A Ohshima, and H Ukita, and H Murakami, and Y Chiba, and H Kamada, and M Hara, and I Saito
October 2003, Drug discovery today,
H Sawa, and T A Ohshima, and H Ukita, and H Murakami, and Y Chiba, and H Kamada, and M Hara, and I Saito
January 2016, PloS one,
Copied contents to your clipboard!