Fluorescence properties of quinacrine enantiomers complexed with synthetic double-stranded polyribonucleotides. 1997

S Tani, and Y Kubota
Department of Chemistry, Faculty of Science, Yamaguchi University, Japan.

The interaction of quinacrine (QAC) enantiomers with poly(A).poly(U) and poly(I).poly(C) has been studied by fluorescence spectroscopy. The fluorescence and fluorescence-excitation spectra of QAC enantiomers complexed with the polyribonucleotides showed a marked dependence on the excitation and emission wavelengths. This behavior of the bound QAC enantiomers was almost independent of the chirality of the cationic side chain and was very similar to that of the bound racemic QAC.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011063 Poly A-U A double-stranded polyribonucleotide comprising polyadenylic and polyuridylic acids. Polyadenylic-Polyuridylic Acid,Poly r(A-U),Poly(rA)-Poly(rU),Acid, Polyadenylic-Polyuridylic,Poly A U,Polyadenylic Polyuridylic Acid
D011070 Poly I-C Interferon inducer consisting of a synthetic, mismatched double-stranded RNA. The polymer is made of one strand each of polyinosinic acid and polycytidylic acid. Poly(I-C),Poly(rI).Poly(rC),Polyinosinic-Polycytidylic Acid,Polyinosinic-Polycytidylic Acid (High MW),Polyriboinosinic-Polyribocytidylic Acid,Polyribose Inosin-Cytidil,Inosin-Cytidil, Polyribose,Poly I C,Polyinosinic Polycytidylic Acid,Polyriboinosinic Polyribocytidylic Acid,Polyribose Inosin Cytidil
D011796 Quinacrine An acridine derivative formerly widely used as an antimalarial but superseded by chloroquine in recent years. It has also been used as an anthelmintic and in the treatment of giardiasis and malignant effusions. It is used in cell biological experiments as an inhibitor of phospholipase A2. Mepacrine,Acrichine,Atabrine,Atebrin,Quinacrine Dihydrochloride,Quinacrine Dihydrochloride, Dihydrate,Quinacrine Dihyrochloride, (R)-Isomer,Quinacrine Dihyrochloride, (S)-Isomer,Quinacrine Dimesylate,Quinacrine Hydrochloride,Quinacrine Monoacetate,Quinacrine Monohydrochloride,Quinacrine Monomesylate,Quinacrine, (+-)-Isomer,Quinacrine, (R)-Isomer,Quinacrine, (S)-Isomer,Dihydrochloride, Quinacrine,Dimesylate, Quinacrine,Hydrochloride, Quinacrine,Monoacetate, Quinacrine,Monohydrochloride, Quinacrine,Monomesylate, Quinacrine
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer

Related Publications

S Tani, and Y Kubota
January 1988, Molekuliarnaia biologiia,
S Tani, and Y Kubota
February 1974, Experimental parasitology,
S Tani, and Y Kubota
February 1971, Journal of molecular biology,
S Tani, and Y Kubota
January 1969, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
S Tani, and Y Kubota
May 1973, Biochemical and biophysical research communications,
Copied contents to your clipboard!